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ABSTRACT. I develop a model of endogenous production network formation between
spatially distant firms. Unlike other such models, it is tractable even for very large
numbers of firms, that is, it delivers closed-form predictions for firm-to-firm trade, it
can be estimated via maximum likelihood, and it can be used for firm-level counterfac-
tual analysis. I exploit novel micro-data on Indian firm-to-firm production networks
for estimation. The estimated model implies that upon market integration across
Indian states, over half of the variation in changes in firms’ sales to other firms can
be explained by endogenous changes in network structure.
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1. INTRODUCTION

Heterogeneity in production costs across firms is at the heart of modern general equi-
librium models of firm heterogeneity and trade. Yet differences in firms’ production
costs are typically attributed to differences in productivity across firms. With firms
operating in production networks, differences in production costs arise not just from
differences in productivity but also from finding the most cost-effective suppliers of
intermediate inputs. General equilibrium theories of trade with firms differing only in
productivity do not grapple with microscopic heterogeneity in the extensive and inten-
sive margins of firm-to-firm trade in intermediate inputs — who buys from whom and
how much? How does endogenous formation of customer-supplier linkages between
firms and the resultant network architecture drive differences in firms’ overall sales,
ability to sell across multiple destinations, and aggregate patterns of trade? How do
we evaluate the impact of market integration, technology improvements, and improve-
ments in allocative efficiency on aggregate outcomes when the production network of
firms reorganizes in response to these shocks?

In this paper, I present a novel rich yet tractable empirical model of endogenous net-
work formation between spatially distant firms to evaluate the aggregate and firm-level
consequences of shocks. The contribution is four-part. First, I use novel micro-data
to document empirical regularities arising from a new decomposition of firms’ sales
that underscores the salience of endogenous network formation between firms and mo-
tivates the theory. Second, I develop a theory of trade between multiple locations
featuring endogenous formation of firm-to-firm production networks that not only ra-
tionalizes micro-data on firm-to-firm sales but is also consistent with structural gravity
at the aggregate level. Third, I devise a procedure to structurally estimate the model
that circumvents computational difficulties pervasive in estimation of network forma-
tion models with large numbers of firms. Fourth, I propose a procedure to evaluate
counterfactual outcomes that accounts for randomness in network formation without
requiring simulation of large networks which can be computationally burdensome due
to interdependence in link formation.

Firms operating in production networks are vastly heterogeneous in size. Why do
some appear to be selling so much more inputs than others? Perhaps they are attrac-
tive input suppliers or happen to have large customers that demand higher volumes.
Using data on 103 million firm-to-firm relationships assembled from administrative
VAT records spanning across 5 years and pertaining to around 2.5 million Indian firms

located across 141 districts, I conduct a new decomposition for firms’ sales to other
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firms to delineate these channels." I find that firms with higher sales to other firms
tend to be used more intensively by other firms and tend to sell to larger customers.
The first margin explains 81% of the variation whereas the remaining 19% is explained
by the second margin.

The attractiveness of a firm, that is, its ability to supply at a lower price either
due its own productivity or because it sources inputs cheaply from efficient suppliers
influences how intensively it is used by other firms. The outsized importance of the
first margin suggests that endogenous formation of firm-to-firm linkages arising from
attractiveness of firms is pertinent to understanding the origins of firm heterogeneity.

I develop a new Ricardian model of trade between multiple locations with geographic
barriers and imperfect competition (as in Eaton and Kortum (2002) and Bernard et al.
(2003)) that accommodates heterogeneous consumer preferences, heterogeneous tech-
nological requirements by firms, and arbitrary production network formation between
firms.” Firms’ production processes consist of multiple input requirements. Potential
suppliers differ in the suitability of their goods for each of these requirements. Firms
randomly encounter potential suppliers and select the most cost-effective suppliers for
their production requirements. Firms are more likely to select a potential supplier for a
larger proportion of their requirements if it is able to sell at a lower price and produces
a good that is more suitable for its production requirements.

The ability of a potential supplier to sell at a lower price than another is regulated by
(a) its idiosyncratic productivity, (b) the efficiency with which its own suppliers were
able to produce thus affording the firm a lower price for intermediate inputs, and (c)
proximity to location of use thus having to incur lower geographic costs. Firms with
lower production costs thus are used more intensively in their customers’ production
processes. Since these customers use cheaper inputs, they end up with lower production
costs themselves and become cost-effective suppliers to their customers. In the cross-
section, firms with low production costs end up larger because they are used more
intensively by other firms and also have larger customers.

I leverage the recursive structure of network formation between firms to estimate
the model via the conditional choice probability approach inspired by Hotz and Miller
!Notably, Huneeus (2020) and Bernard et al. (2021) decompose firms’ sales to other firms into number
of customers and sales per customer whereas the decomposition proposed here is into intensity of use
by other firms and average customer size. Unlike the former, the latter decomposition is suitable for
separating the aforementioned channels of firm heterogeneity in input sales.
2While Caliendo and Parro (2014) allow for sectoral heterogeneity and inter-sectoral linkages in a
Ricardian model of trade, they do not allow for arbitrary production networks between firms and are
unable to accommodate the vast heterogeneity in input sourcing patterns at the firm-level observed

in data.
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(1993). Differences in the suitability of potential suppliers’ goods for a firm’s production
requirements feature as match-specific productivities across firm pairs in a manner
similar to the discrete choice framework. This leads to a multinomial logit model of
supplier choice for each of the firm’s production requirements. The estimation equation
recognizes that while there is a positive probability of a firm sourcing inputs from every
other firm, sourcing inputs for only a discrete number of requirements can give rise to
sparsity in firm-to-firm connections. This sparsity can be extreme as is observed in
the data where the number of firm-to-firm connections are many orders of magnitude
lower than its potential given the number of firms in the economy.

Predictions for firm-to-firm trade then allow estimation of the model utilizing the
full volume of micro-data on firm-to-firm transactions via maximum likelihood. Semi-
parametric estimation of the model implies that firms’ fixed effects serve as sufficient
statistics for their implied marginal costs and bilateral inter-district fixed effects as a
structural gravity specification for estimating trade frictions. Such estimation typi-
cally entails a high-dimensional non-linear optimization problem that quickly becomes
cumbersome with large numbers of fixed effects. I show that these fixed effects can be
computed in closed-form thus avoiding the problem altogether.

For counterfactual analysis, I propose a new procedure that departs from the exact
hat algebra approach commonly used in trade models (see Dekle et al. (2008) and
Costinot and Rodriguez-Clare (2014)). In aggregate models of trade featuring a con-
tinuum of agents, the exact hat algebra approach evaluates the change in aggregate
outcomes in response to shocks. In those models, aggregate data coincides with the
expected value of aggregate outcomes in the initial state. In contrast, my model fea-
turing finitely many agents implies that the observed data corresponds to only one of
many possible realizations under the initial state. The data generating process implied
by the model is therefore non-degenerate and hat algebra cannot be used as is. To
evaluate counterfactual outcomes, I first solve the model in the initial state under a
continuum approximation of the finite economy and then use hat algebra to solve for
changes in the model in the counterfactual state. The model and the procedure are rich
enough to speak about aggregate and firm-level effects of macro- and micro-shocks.

Using the estimated model, I evaluate the impact on production networks of reducing
inter-state border frictions in the context of the recent Goods and Services Tax reform
in India that aimed to mitigate such barriers to trade. I find that following a 10%
decline in border frictions over half of the variation in changes in firms’ sales to other
firms implied by the model can be explained by endogenous changes in the network

structure.



Related Literature. This paper contributes to four strands of literature. First, this pa-
per is related to the nascent literature on endogenous production networks in general
equilibrium which can be broadly classified into two categories. The first (Oberfield
(2018); Acemoglu and Azar (2020); Boehm and Oberfield (2020); Antras and de Gor-
tari (2020); Miyauchi (2021); Eaton et al. (2022)) models formation of linkages as the
outcome of selection from a discrete menu of choices whereas the second (Lim (2018);
Taschereau-Dumouchel (2020); Huneeus (2020); Tintelnot et al. (2018); Bernard et al.
(2021); Demir et al. (2021); Arkolakis et al. (2021)) models formation of linkages be-
tween firms as the outcome of “love of variety” in input sourcing while being subject
to relationship costs.” While network formation in this paper is outcome of discrete
choice as in the former, the model here uniquely delivers closed-form predictions for
firm-to-firm trade unlike other models of endogenous production networks. This has
three advantages relative to other papers: (a) the model is estimated using the full
volume of data of firm-to-firm sales via maximum likelihood and does not rely on
matching a selection of aggregate moments, (b) the model can be tractably solved even
for very large numbers of firms and does not require computationally burdensome sim-
ulation for estimation or counterfactual analysis, and (c¢) counterfactual outcomes can
be evaluated across the distribution of firms and not just for aggregate outcomes such
as welfare all while accounting for endogenous changes in network structure.

Second, this paper is related to a long literature on firm heterogeneity (for example,
Jovanovic (1982); Hopenhayn (1992); Axtell (2001); Melitz (2003); Klette and Kortum
(2004); Luttmer (2007); Arkolakis (2016)) and in particular the branch that studies the
heterogeneity among firms arising from their engagement in input-output linkages —
Oberfield (2018) and Bernard et al. (2021). The model here houses two sources of firm
heterogeneity — from idiosyncratic productivities and from match-specific productiv-
ities and engagement in input-output linkages. Unlike Oberfield (2018), the model
accommodates heterogeneity in the number of input suppliers across firms as well as
in the intensity of use of suppliers across their customers. The model thus allows for
variation in firms’ average intensity of use by their customers. In the data, this margin
explains 46% of the variation in firms’ sales. The modeling approach here is distinct
from Bernard et al. (2021) who use a fixed cost formulation that necessitates use of
simulation-based estimation methods.

Third, the paper also relates to a growing literature on propagation of shocks and

aggregation in distorted production networks including Jones (2011), Acemoglu et al.

30ther complementary approaches to endogenous production network formation include Carvalho and
Voigtlander (2014) and Chaney (2014, 2018).
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(2012), Swiecki (2017), Caliendo et al. (2017b), Liu (2019), Baqaee and Farhi (2019a,b,
2020), and Bigio and LaO (2020). Some of these papers allow for non-Cobb—Douglas
technologies and thus endogenize the intensity with which different inputs are used.
However, they do not investigate which combinations of inputs will be used—that is,
the extensive margin of firm-to-firm trade —which features prominently in this paper.

Finally, this paper is related to the branch of the trade literature that develops firm-
level models of importing for example, Antras et al. (2017); Blaum et al. (2018). While
these papers consider models where firms choose the set of locations to source inter-
mediate inputs or the share of intermediate inputs that are imported, here I develop a
more disaggregated model where firms choose both the set of suppliers across multiple
locations for intermediate inputs and the share purchased from each of them. The
model also shares features with papers that emphasize the role of granularity in trade
models such as Eaton et al. (2013), Armenter and Koren (2014), and Gaubert and
I[tskhoki (2021). The approach to counterfactual analysis parallels contemporaneous
work by Dingel and Tintelnot (2020) who take a related approach in a granular model

of commuting choice.

2. NETWORK MARGINS OF FIRM HETEROGENEITY & TRADE

2.1. Sources of Data. The primary dataset for this paper consists of the universe
of firm-to-firm transactions assembled from commercial tax authorities of five Indian
states (viz. Gujarat, Maharashtra, Tamil Nadu, Odisha, and West Bengal) between
2011-12 and 2015-16.* These states had a nominal GDP of $738 billion in 2015-16,
accounting for nearly 40% of GDP. Among these states, the largest (Maharashtra) ac-
counts for roughly 14% of national GDP while the smallest (Odisha) accounts for a little
over 2%. It includes transactions between all firms registered under the value-added
tax system in these states. The dataset records 103 million inter-firm relationships

between approximately 2.5 million firms located across 141 districts in these 5 states.

2.2. Empirical Regularities. Indian firms are vastly heterogeneous in size, a perva-
sive finding in studies of firm-level data. Using firm sales to other firms as a measure
of size, I find that firms in the top decile are at least 700 times larger than firms in the
bottom decile. In production networks, firm outcomes are shaped not only by their
own intrinsic characteristics, like productivity, but also by the characteristics of the

firms — suppliers and customers — that they connect with. For a pair of firms s and b,

4For a financial year, say 2015-16, the data pertains to the period between April 1, 2015 and March
31, 2016.
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the value of goods purchased by b from s can be written as:
sales(s,b) = m(s,b) x purchases(b),

where purchases(b) denotes the value of goods purchased by b from all other firms and
is calculated as ) sales(s,b); and m(s,b) denotes the share of purchases of b that are
from s.°

A firm could have a high volume of intermediate input sales either because (a) it is
an attractive input supplier (higher m(s,b)), that is, it can provide output at a lower
price (either because it sources inputs cheaply from efficient suppliers upstream to it or
due its own productivity) — an upstream margin, or (b) it happens to sell to customers
downstream which are large (higher purchases(b)) and demand higher volumes — a
downstream margin. While the downstream margin is operational in models with
exogenous production networks, the upstream margin requires a model of endogenous
network formation between firms — one where firms choose their suppliers and the
intensity with which they use inputs from those suppliers.

To shed light on the economic importance of these margins and guide the main
features of the model I will develop in Section 3, I leverage the rich network structure
of the dataset to conduct a simple decomposition of firms’ sales to other firms into two
margins: intensity of use and average customer size. Formally, sales of firm s can be

decomposed into these two factors according to the following identity.

(2.1) sales(s) = intensity of use(s) x average customer size(s),

where

sales(s) = Z sales(s, b),

b
intensity of use(s) = Z 7(s,b),and

b

b h b

average customer size(s) = 2 (s, b) x purchases(b)
Eb 7T(87 b)

Through variation in intensity of use, the first factor captures the attractiveness of

the firm to potential customers deciding who to source inputs from and how much to
source from them. The second factor measures average size of customers as inferred

from a weighted average of their input purchases. The first factor constitutes the

5Tt is worthwhile to note that (s, b) € [0, 1] implicitly captures whether s is indeed a supplier to b
depending on whether it is zero or positive.
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upstream margin and captures the direct importance of the firm in the production
network since it captures how cost-effective the firm is irrespective of the characteristics
of the customers it sells to.® The second factor constitutes the downstream margin and
captures the indirect importance of the firm in the production network through the
importance of its customers, its customers’ customers and so on.

I compute the share of variance of firms’ sales that is explained by each of these
factors.” Column (1) in Table 2.1 reports the results of the decomposition. Four-fifths
of the variance in firms’ sales can be attributed to the upstream margin leaving the
rest for the downstream margin. It implies that larger firms are likely to be used more
intensively by other firms (explains 81% of the variance), and have larger customers
(19%). Both factors covary positively with sales and contribute a non-trivial share to
the variance. The positive covariance of the downstream margin can be rationalized as
follows. Firms with higher demand for their own goods produce larger quantities and
to do so they purchase higher quantities of inputs from their suppliers. In turn, their
suppliers end up with higher demand and they source larger quantities from their own
suppliers and so on. Therefore, in the cross-section one observes that larger firms have
larger customers on average. This points to the importance of supply chain linkages
between firms even when the network structure is exogenously fixed.

However, it is the outsized contribution of the upstream margin that highlights the
importance of endogenous network formation through two potential channels. First,
when firms choose to source from more cost-effective suppliers, they are likely to inherit
lower marginal costs from their suppliers. This makes them attractive to their own
customers who become larger in turn. Therefore, in the cross-section one would observe
a positive correlation between firms’ sales and number of customers. Second, when
suppliers’ goods are substitutable in a firms’ input demand system, more cost-effective
firms will account for a larger share of material costs of their customers. Since those
customers source cheaper inputs intensively, they are likely to inherit lower marginal
costs from their suppliers. This makes them attractive to their own customers and
they become larger themselves. Therefore, in the cross-section one would observe a

positive correlation between firms’ sales and average intensity of use by customers.

6The upstream margin is sometimes referred to as the firm’s weighted out-degree. In recent work,
Acemoglu et al. (2012) coin this term for similar statistics at the industry level.

n short, if a variable X can be decomposed into two factors, Xi;and X5 such that X = X; - Xs,
then the share of variance of X that can be attributed to any factor X, is % While these
shares sum to unity by additivity of the covariance operator, they are not constrained to be positive
individually. For example, see Klenow and Rodriguez-Clare (1997) for use in growth accounting and
Eaton et al. (2011) for regression-based decomposition of margins of trade.
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Putting together both these margins - who to buy from and how much — one would
observe a positive correlation between firms’ sales and intensity of use. This suggests
that endogeneity of production networks is important both along the extensive and
intensive margins of firm-to-firm trade.

Furthermore, trade across space is costly and economic activity across space exhibits
large dispersion. How does the relative position of firms across space affect their out-
comes? How does geography affect the aforementioned margins of firm heterogeneity?
To investigate this, I construct a similar decomposition at a more disaggregated level
for firms’ destination-specific sales and at a more aggregated level for trade flows be-
tween districts.® Column (2) in Table 2.1 reports results of variance decomposition
of firm’s destination-specific sales while controlling for firm-level fixed effects. This is
done to capture the variation in individual firms’ sales across multiple destinations.
The upstream margin accounts for 93% of the variation leaving 7% for the downstream
margin. Column (3) in Table 2.1 reports results of variance decomposition of aggregate
trade flows between districts while controlling for origin fixed effects. The upstream
margin accounts for 83% of the variation leaving 17% for the downstream margin.
Since the upstream margin explains the lion’s share of the variation in both cases,
these results underscore the salience of geography in endogenous network formation
between firms.

Taking stock, I find that firms that are larger also tend to be used more intensively
by other firms and tend to have larger customers. Of course, these decompositions cap-
ture equilibrium relationships and are not causal; nevertheless, they make clear that
understanding the characteristics of firms’ network is key to understanding origins of
firm heterogeneity. While the economic intuition behind these results is straightfor-
ward, the decomposition results are new to the literature. With this in mind, I develop
a model of endogenous production network formation in the next section that expressly
takes these findings into account and leads to a multinomial logit model of supplier

choice for estimation.

Discussion. In modeling frameworks inspired by Melitz (2003) (for example, Lim (2018);
Huneeus (2020); Bernard et al. (2021)), firms’ ability to cover fixed costs (potentially
heterogeneous) determine the extensive margin (number of customers) while attrac-
tiveness of firms through variable productivity determines the intensive margin (sales
per customer). When customer size is homogeneous, variation in average market share

across customers is identical to that in sales per customer. As a result, sales per

8Further details are provided in Appendix A.



TABLE 2.1. Network Margins of Firm Heterogeneity & Trade

(1) (2) (3)

Intensity of Use 81% 93% 83%
Average Customer Size 19% ™% 17%
Fixed Effects:
Seller x Year — v —
Origin X Year — — v
Data Level:
Seller x Year ° — —
Seller x Destination x Year — ° —
Origin x Destination x Year — — °
# observations 5.6x10% 18.2x10% 58,390

Note. Column (1) reports the contribution of intensity of use and average customer
size to the variance of firms’ sales (as per equation (2.1)). Column (2) reports the
contribution of those factors to the variance of firms’ destination-specific sales (as per
equation (A.2)). Column (3) reports the same for trade flows between districts (as
per equation (A.3)). See Appendix A for details and alternative specifications.

customer is a good measure to infer attractiveness of firms. When customer size is
heterogeneous as is the case here, variation in sales per customer reflects variation in
both attractiveness of firms and average size of customers. Therefore, to infer attrac-
tiveness of firms through variable productivity one needs to look at average market
share among customers and not sales per customer. In both cases, number of cus-
tomers is a good measure to infer firms’ ability to cover fixed costs. Together, number
of customers and average market share among customers constitute intensity of use.
Intensity of use is therefore a good measure to infer attractiveness of firms either from
ability to cover fixed costs or variable productivity. The model described in the follow-
ing section features no fixed costs. However, variation in both number of customers
and average market share (together, intensity of use) arise from attractiveness of firms
through variable productivity. Consequently, when we move to estimation, intensity of

use turns out to be sufficient statistic for attractiveness of firms.

3. AN EMPIRICAL MODEL OF ENDOGENOUS SPATIAL PRODUCTION NETWORKS

In this section, I describe a model of trade between multiple locations that accom-
modates heterogeneity in consumer preferences, heterogeneity in technological require-
ments of firms and arbitrary production networks. The model economy consists of

many firms and households at many locations. Firms produce using local labor and
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intermediate inputs sourced from suppliers potentially spread across multiple locations.
Trade between locations is subject to iceberg trade costs , that is, a firm producing at
o needs to ship 7,4 units of a good for one unit of good to arrive at d.

Throughout, the paper, a firm is indexed by s when it is a seller of intermediate
inputs or goods for final consumption and by b when it is a buyer of intermediate
inputs. A location is indexed by o when it is the origin of a trade flow and typically
where firm s is located. Similarly, it is indexed by d when it is the destination of a
trade flow and typically where firm b is located. The set of all locations is denoted by
J. The set of all firms is denoted by M and the subset located at o is denoted by M,,.
The number of elements in these sets are denoted as M = | M| and M, = | M,|.

3.1. Technology and Market Structure. Firms’ production processes involve com-
bining labor and accomplishing a set of tasks by sourcing intermediate inputs from other
firms. In particular, the production function for any firm b at location d is defined over
labor and a discrete number of tasks (indexed by k € K = {1,--- , K}) as:

1—ayg m 1K aq
yalb) = 24(0) (M) (er/c o(b,k) ) |

1—Oéd Qq

ma(b, k) = Y moa(s, b, k),
5€84(b)
where [4(b) is the amount of labor input used by firm b, mg4(b, k) is the quantity of
materials utilized to accomplish task k, z4(b) is the idiosyncratic Hicks-neutral pro-
ductivity with which firm b produces, and K is the number of tasks in the production
function.”

Among all the firms in the economy, firm b encounters only a few and can source
intermediate inputs to accomplish tasks only from those firms. In particular, it en-
counters any potential supplier with probability ﬁ via independent Bernoulli trials.
The restricted set of potential suppliers, denoted by Sy(b), is therefore completely de-
termined as the outcome of these Bernoulli trials for meeting each firm and is common
for all tasks. While outputs of potential suppliers are perfectly substitutable for ac-
complishing any task, they differ in their suitability for the task in question, captured
by their respective match-specific productivities. For each of its tasks, firm b selects
the supplier that offers the lowest effective price. Importantly, firm b may choose the
same supplier for more than one tasks. Since firms only encounter a few suppliers
mof tasks is common across all firms in the economy for simplicity. It is straightforward

to allow for heterogeneity in numbers of tasks but that would not affect the main results of the paper.
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when sourcing intermediate inputs, I assume that firms face limit pricing behavior

when sourcing inputs.!’

3.2. Cost Minimization and Input Sourcing. [ now turn to firms’ cost minimiza-
tion problem. Selecting the cost-minimizing input bundle consists of choosing not only
who to source inputs from but also how much to buy from each of them. For any task
k in firm b’s production function, the cost-effectiveness of a supplier s from location
o in Sy4(b) depends on four factors: (a) the marginal cost of s, denoted ¢,(s); (b) the
trade cost faced by s of shipping goods to d, T,q4; (¢) the match-specific productivity
when b utilizes the output of s to accomplish the task, denoted by a.q (s,b, k), and
(d) the markup charged by s when it sells its output to b for accomplishing the task,
denoted myq (s,0, k). In particular, firm b chooses the supplier that offers the cheapest
price, that is,
. i Mod (8,0, k) co(S)Toq
(3.1) sh(b, k) = arg ain { (aod(s,?), k:g ) } .

With limit pricing, the markup is determined by how much lower the effective cost

faced by the best supplier is relative to the second best. Now, taking wage wy and
effective prices {p4(b, k) : k € K} (defined below) as given, the firm’s unit cost function
is given by:
wy (ITiex Pa(d, k)l/K)ad

za(b) ’
where py(b, k) is determined according the following equation:

Mod (8,0, k) Co($)Toa
aoq (8,0, k) '

Discussion. Firms spend equal shares of costs across tasks. Although the elasticity of

(3.3) pa(b, k) = uin

substitution between tasks is equal to unity, this formulation captures richer patterns
of substitution across outputs of other firms that are used to accomplish tasks. This is
because a potential supplier charging a lower price is likely to be selected for a higher
number of tasks by any firm and hence is likely to account for a higher cost share of

the firm. The extensive margin of firms’ input sourcing is determined by whether a

OMarkups are variable and endogenously determined through Bertrand competition. Dhyne et al.
(2022) and Huang et al. (2022) also propose models of firm-to-firm trade featuring endogenous and
variable markups through oligopolistic competition. Dhyne et al. (2022) propose a model where
firm-to-firm trade in endogenous only on the intensive margin while Huang et al. (2022) propose a
two-sided model where each firm is either a supplier or a buyer of intermediate inputs but not both.
Here, firm-to-firm trade is endogenous also on the extensive margin and any firm can simultaneously
be a buyer and a supplier of intermediate inputs.
12



potential supplier is chosen for at least one of the tasks whereas the intensive margin
is determined by how many tasks the potential supplier gets selected for. Both these
margins of firm-to-firm trade — who buys from whom and how much? — are determined
endogenously in equilibrium.

It is worthwhile noting that forces that generate the extensive and intensive margins
of firm-to-firm trade here differ from other models of network formation. In Miyauchi
(2021); Arkolakis et al. (2021); Eaton et al. (2022), heterogeneous search frictions
and labor productivity differences regulate the extensive margin while attractiveness
of potential suppliers regulates the intensive margin. In Lim (2018); Huneeus (2020);
Bernard et al. (2021); Demir et al. (2021), fixed costs of relationship formation regulate
the extensive margin while attractiveness of potential suppliers regulates the intensive
margin. The model here does not feature heterogeneous search frictions, labor produc-
tivity differences or fixed costs of relationship formation. Despite this parsimony, the
model generates variation in both the extensive and intensive margins of firm-to-firm

trade.
3.3. Closing the Model.

Household Preferences. Households are modeled analogously with tasks in their utility
function. They encounter potential suppliers and select the most cost-effective suppliers
for each task similar to firms sourcing inputs. Each household supplies one unit of labor

inelastically to local firms and receives labor income. Firms rebate any profits to local
households.

Equilibrium Definition. Let 0 = {z, 7,8, a} denote the aggregate state of the economy.
Here z denotes the vector of idiosyncratic productivities of firms, 7 denotes the vector
of trade costs across all pairs of locations, & denotes the sets of potential suppliers of
all firms and households, and a denotes the vector of all match-specific productivities.
All of these objects are exogenous. An equilibrium in this economy is an allocation and
a price system such that (a) households and firms select suppliers for tasks; (b) firms
set prices for other firms and households under limit pricing; (c¢) households maximize
utility; (d) firms minimize costs; and (e) market clears for each firm’s goods and for
labor at each location. This completes description of the economic environment in the
model.!!

Moving ahead, the aggregate state can be divided into two parts. The first comprises

of firms’ productivities and trade costs; this is denoted by oo = {z,7}. The second

1A detailed description is provided in Appendix B
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part comprises of sets of potential suppliers for firms and households and match-specific
productivities and taste shocks; this is denoted by o1 = {8, a}. While oy narrows down
the set of networks that could be realized as an outcome of the network formation

process, o1 pinpoints the exact network of firms that is realized.

4. TAKING MODEL TO DATA

To map the model to micro-data on firm-to-firm sales for estimation, I proceed in
four steps. First, I utilize the recursive representation of network formation between
firms to cast it as a quasi- dynamic programming problem. Second, I show that the
model delivers closed-form characterization of conditional choice probabilities in this
quasi- dynamic discrete choice setting. Third, I describe how these conditional choice
probabilities coupled with multiple discrete choice across tasks lead to a multinomial
logit model of supplier choice. Finally, I tackle the computational burden imposed by
the high-dimensionality of the non-linear estimation problem by exploiting special fea-
tures of the multinomial likelihood specification. The resulting estimation framework is
scalable and circumvents computational difficulties pervasive in estimation of network

formation models with large numbers of firms.

4.1. A Recursive Representation of Network Formation. I begin by casting
network formation between firms as a quasi-dynamic programming problem. In par-
ticular, combining equations (3.2) and (3.3), I find that marginal cost of any firm b

admits the following recursive representation.

l—ay K - 24
w . Mod(5, b, k)Toa K
4.1 b) = 2d Modls, ’
(41) calb) = % szlsé%i?b){ aoa(s. b k) el

This representation is akin to a setting with dynamic discrete choice (albeit with
multiple discrete choice). The estimands in this estimation problem are trade costs
{7oq : (0,d) € J?} which are exogenous and firms’ marginal costs {c,(s) : s € M} which
are endogenously determined, unobserved in the data and run into millions. As a re-
sult, full solution methods for estimation of dynamic discrete choice models (such as
Rust (1987)) are infeasible and simulation-based approaches are computationally bur-
densome due to rich interactions between a large number of firms. Therefore, I utilize
the conditional choice probability approach to estimate the model following Hotz and
Miller (1993). In this context, conditional choice probabilities are the probabilities with
which any given supplier s is chosen for any one of the buyer 0’s tasks conditional on its
marginal cost being ¢,(s). I proceed to show next that the model delivers closed-form

predictions for these probabilities.
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Discussion. Antras and de Gortari (2020) and Menzel (2022) also suggest use of meth-
ods proposed for dynamic discrete choice to estimate models of supply chain formation
and pairwise stable network formation respectively. The adaptation here is different in
two ways. First, the dimensionality of the estimation problem in their cases is much
smaller while here it is dictated by the millions of firms in the model. Therefore, I pro-
ceed with estimation via the conditional choice probability approach instead of using
the constrained optimization approach which they do. Second, the model here features
multiple discrete choice by many firms that lead to transparent estimating equations
for cost shares at the firm-to-firm level whereas their models are of single discrete choice

by many firms or agents and do not lead to the same characterization.

4.2. Conditional Choice Probabilities & Firm-to-Firm Trade. I turn to expres-
sions for conditional choice probabilities and hence predictions for firm-to-firm trade.
I assume that match-specific productivities are drawn independently for all potential
suppliers for each of the tasks in firms’ production functions from a Pareto distribution

as stated in the following assumption.

Assumption 1. Match-specific productivities are drawn independently according to the

following Pareto distribution:
Fula) = 1= (ofar)

In a sufficiently large economy such that 0 < %ar < 1, [Aa§ — 1] < &1, and |ag| < &,
for arbitrarily small values of €; and 5 one can obtain closed-form expressions for con-
ditional choice probabilities. Recall from equation (3.1) that firms choose suppliers for
tasks based on suppliers’ marginal costs, trade costs faced by them, and match-specific
productivities associated with the task under consideration. While trade costs 7 consti-
tute og, match-specific productivities are unknown and suppliers’ marginal costs ¢, (s)
are determined endogenously. I therefore characterize conditional choice probabilities
for supplier choice, i.e., probabilities for choice of supplier conditional on its marginal
cost but in expectation over match-specific productivities that are yet to be realized.
Let ©2,(s,b) denote the probability with which firm b selects firm s for any one of its
tasks. Prior to encountering and realizing match-specific productivities for each task,
the probability of firm s getting selected for any one of the tasks by firm b is com-
mon across all tasks. That is, 70, (s,b) = moy(s,b,k) = E,y [1{s = si(b, k) | 09, 01}]
where the expectation operator is over all realizations of ;. The following proposition

provides expressions for conditional choice probabilities 72, (s,b).
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Proposition 1. For any realization of o, conditional on firm s’s marginal cost being
Co(8), the probability with which any firm b located in d selects firm s located in o for
any gien task is
—¢ —C
Co(s)7CT
(4.2) o, (s,b) = G -
ZS’EM CO/(S,)_CTO/

Proof. See Appendix C.1. O

The above proposition is key to understanding what drives network formation among
firms in the model and how it enables the model to match empirical regularities de-
scribed in Section 2. Equation (4.2) highlights the factors that influence the likelihood
of a supplier s from o getting selected by a buyer at d for any one of its tasks. Firms
with lower marginal costs, denoted by ¢,(s), are more likely to get selected for more
tasks. Firms that are located nearer to the buyers and face lower trade costs, denoted
by 7.4, are more likely to get selected for more tasks. Moreover, the elasticity of the

likelihood of getting selected with respect to marginal costs or trade costs is decreasing

. . Olnnl,(sb) 0wl (sb)
1 g That 18, dlnco(s) ~ Olnteq

high match-specific productivities are more likely and the choice of supplier is less sen-

—(. With lower (¢, Assumption 1 implies that

sitive to other factors, i.e., its marginal cost and the trade cost faced by it. The shape
parameter ( regulates the thickness of the right tails of the match-specific productivity
distribution. The lower ( is, the higher is the likelihood of particularly high draws
of match-specific productivities. With higher likelihood of high draws, the choice of
supplier (according to equation (3.1)) is less sensitive to marginal cost of the supplier,
markup or trade costs.

In summary, this proposition channels the role of the upstream margin — at any
location d, firms with lower marginal costs are likely to be used intensively by cus-
tomers. The role of geography in the upstream margin comes from the dependence of
these probabilities on trade costs — firms from o are less likely to be successful across
potential customers at d if o is farther, i.e., 7,4 is higher. The tractable expressions
for firm-to-firm trade in Proposition 1 give rise to transparent estimating equations for

the model, to which I turn next.

Discussion. In other models of network formation (such as Lim (2018); Huneeus (2020);
Miyauchi (2021); Arkolakis et al. (2021); Bernard et al. (2021); Eaton et al. (2022)),
forces that regulate the extensive and intensive margins of firm-to-firm trade are dis-
tinct. Consequently, those models are not able to deliver a closed-form prediction for
firm-to-firm trade that uniquely features here. Both the extensive and intensive mar-

gins of firm-to-firm trade are determined by attractiveness of suppliers. The extensive
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margin then arises naturally as an outcome of discreteness of the number of tasks in
production. In other words, even with a positive probability of supplying any one task,
there is a positive probability of not being able to supply any of the tasks because there

are only a discrete number of tasks to supply for.

4.3. A Multinomial Logit Model of Supplier Choice. I reformulate the economic
model developed so far as a multinomial logit model of supplier choice for tasks of each
of the firms and estimate it semi-parametrically. Firm’s marginal costs are estimated as
firm fixed effects and bilateral origin-destination fixed effects correspond to a structural
gravity specification for estimating trade frictions. Trade frictions are then estimated
by projecting bilateral fixed effects on observables such as distance and borders etc.
The econometric model can be motivated using the balls and bins problem. Consider
the multinomial random variable characterized by a firm b located at d throwing K balls
(one for each of its tasks) into M bins. Each of these bins corresponds to a potential
supplier, denoted by s. The probability with which any of these balls falls into the
bin indexed s is given by the expression for 72,(s,b) from Proposition 1. A realization
of this random variable consists of the proportion of balls that landed in each of the
bins. Since tasks are symmetric and the production function of firm b takes the Cobb-
Douglas functional form, the model counterpart of this realization is the vector of cost
shares of firm b across all suppliers in the economy. In other words, the cost share of
firm b that can be attributed to firm s stands in for the relative frequency of firm s’s
successes in getting selected across firm b’s tasks. Since there are a discrete number
of tasks, 7°,(s,b) is only the expected share of tasks for which firm b uses the output
of firm s. Any given realization may deviate from this expected value for particularly
high or low realizations of match-specific productivities and from randomness in buyer-
seller encounters between firms.Therefore, making use of Proposition 1, the estimating
equation can be expressed as a multinomial logit function:
Co(8) " Tot"
Zs’e/\/l CO’(S/)icTo_é

Formally, the estimation problem is as follows:

i 1
(4.4) A" = argmax bZM In fune, (D | A,
S

(4.3) E [moa(s, b)] =

c (8)747_4 71—ocl(svb)
Sune (D | A) o H ( : o _g) a

iy > en Co(8)7CT,0
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where
A= {{co(s)_C s € M}, {To_dc : (0,d) € JQ}} and
D = {moa(s,b) : (s,b) € M?}.

The above specification with fixed effects however presents a problem of perfect mul-
ticollinearity in regressors. Note that dummy variables associated with {co(s)_c 1S5 € MO}
and {T;f de J } are collinear for all such locations o. Hence, I make the fol-
lowing normalizations so that these fixed effects are identified up to scale. For all
s € M,,0€ T, let ¢,(s) = ¢,Co(s) such that

*1/C
( Z 50(8)_C> =1

SEMO
This normalizes the power average of firms’ marginal costs relative to their location

average to unity. It separates within and between location heterogeneity in firms’
marginal costs. The within location component is captured by differences in ¢,(s) while

the between location component is captured by differences in ¢, across locations.'?

Discussion. One could draw an analogy by reinterpreting the Eaton and Kortum (2002)
model of trade between countries as the representative agent in the destination country
throwing infinitely many balls (one for each commodity arranged on a continuum) into
a finite number of bins (one for each origin country). Since the bins are finite in
number while balls are infinitely many, sourcing probabilities coincide with aggregate
trade shares deterministically. In contrast, the model here is of trade between firms
where the customer firm throws a finite number of balls (one for each task) into finitely
many bins (one for every firm in the economy). Since both the bins and balls are
finitely many in number, conditional choice probabilities do not determine firm-to-firm
trade shares deterministically.

In related work, Eaton et al. (2013) also specify a multinomial likelihood function
for international trade between countries derived from a different economic model and
conduct estimation using pseudo-maximum likelihood estimation a la Gourieroux et al.
(1984). The dimensionality of their estimation program is determined by the number
of countries which is a much smaller number compared to the specification here where

the dimensionality is determined by the number of firms that runs into millions.

12The between location component captures both differences in average marginal cost between loca-
tions and also differences arising from having a higher number of firms at one location than another.

To see this clearly, note that if marginal costs are identical across firms at location o, i.e., ¢,(s) = ¢,
. Then, ¢, = M, Y °&,, which depends on both the number of firms and the average marginal cost.
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4.4. Estimating High-Dimensional Multinomial Logit Model. The multinomial
logit specification is problematic because of two reasons. On one hand, firms’ marginal
costs are endogenously determined and unobserved. They are estimated semiparamet-
rically as firm fixed effects. Since there are a large number of firms in the economy,
estimation would typically require high-dimensional non-linear optimization over a very
large number of parameters to solve for the estimates. This can be computationally
infeasible using standard Newton methods when the number of fixed effects runs into
millions. On the other hand, estimation of a generalized linear model with millions of
fixed effects leads to incidental parameters bias in the lower-dimensional estimands.
However, these issues are taken care of by appealing to several special features of the
multinomial likelihood function. First, estimates can be obtained using the Poisson
likelihood function with additional fixed effects (see Baker (1994); Taddy (2015)). Sec-
ond, Poisson likelihood estimation automatically satisfies adding up constraints implied
by the model (see Fally (2015)). Third, Poisson likelihood specification allows solving
for fixed effects in closed-form (for example, see Hausman et al. (1984)). Finally, subse-
quent estimation of trade frictions using bilateral fixed effects does not suffer from the
incidental parameters problem and hence can be conducted through the conditional

maximum likelihood approach.

4.4.1. Marginal Costs and Structural Gravity. The first order conditions implied by the
likelihood maximization problem in equation (4.4) can be solved to obtain closed-form

estimators for fixed effects as described in the proposition below.

Proposition 2. The estimates from equation (4.4) are given by:

Zbe./\/l TrOd(Sv b)
Zs’e./\/lo Zbe/\/l Tod(8',b)

eS¢ " 1
(4.6) <—d—<> =L > Toa(e,b) V(o,d) € J”

—¢
Zo’ Cor Tord beMy

where Toq (8,0) = D c v Tod (5,0).

(4.5) (Go(s) )" =

Vs € M,

Proof. See Appendix C.2. O

The estimators for firm fixed effects in equation (4.5) neatly bridge theoretical predic-
tions on firm-to-firm trade in equation (4.2) and empirical regularities arising from the
decomposition in equation (2.1). The decomposition in equation (2.1) suggested that

larger firms also tend to have higher intensity of use. Conditional choice probabilities
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in equation (4.2) predict that firms with low marginal costs are likely to have higher
intensity of use. Equation (4.5) shows that firms’ intensity of use is a sufficient statistic
for its marginal costs, albeit scaled with an elasticity ¢. In addition, the theoretical
expression for bilateral origin-destination fixed effects in equation (4.6) corresponds to
a structural gravity specification. For any pair of locations (o0, d), the estimator for
this specification is the simple average of the cost share across firms at d that can be
attributed to purchase of goods from firms in 0. This is the empirical counterpart of

sourcing probabilities in equation (5.2).

4.4.2. Trade Frictions and Conditional Choice Probabilities. With firm fixed effects out
of the way, thanks to equation (4.5), trade frictions can now be estimated by projecting
bilateral origin-destination fixed effects (from equation (4.6)) on bilateral observables
such as distance, borders etc., similar to gravity regressions, with the following esti-

mating equation:

(4.7) E

<—Co<ro?z—c )] _ o (o) + Xouh)
S Sy exp (In (e;) + X48)

This delivers estimates of origin fixed effects (c;c)* and trade frictions <7’0_dc> =

exp (X! ,8"). The manner in which trade frictions are estimated here differs from the
standard approach of projecting aggregate trade flows on distance and border dum-
mies (for example, see Agnosteva et al. (2019)). The dependent variable implied by the
model is not aggregate trade flows (for example, Santos Silva and Tenreyro (2006)) or
aggregate trade shares (as in Eaton et al. (2013)) but average trade share across buyers
at the destination. More specifically, the dependent variable Mid > berm, Tod (@, D) is an
unweighted average of the sourcing share from o across all buyers at a destination.
While this is not comparable to aggregate trade flows, it closely related to aggregate
trade shares. In contrast to average trade shares which is a simple average of sourc-
ing shares across firms, the aggregate trade share is a weighted average of individual
sourcing probabilities where each individual buyer is weighted by its size. Note that

measured aggregate trade share can be expressed as

(4.8) Tod = ML Z Tod (9,0) + OOIU (7od(e, b),pur}(l:hasesdb(/b)).
d yem, i, ZbleMd purchases;(¥)

To the extent that size of buyers is correlated with their sourcing from an origin,
aggregate trade shares bias the estimates of the trade frictions faced by individual

firms for the purposes of estimation here. Trade frictions are estimated using gravity
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regressions. Table 4.1 reports estimated coefficients for distance and border dummies in
column (3) and compares them to common methods in the trade literature in columns
(1)-(2). Column (1) is an atheoretical specification (as in Santos Silva and Tenreyro
(2006)) that is consistent with handling zeros in the data . Column (3) is a model-based
specification (as in Eaton et al. (2013)) and accommodates zeros in the data. Column
(3) is the specification that is implied by the model here. Comparing (1) or (2) to
(3) shows that using aggregate trade flows or shares underestimates trade frictions for
estimation of the model here.

Estimates of conditional choice probabilities are then obtained from firm fixed effects
and fitted shares from the gravity regressions. Formally, the estimates of conditional

choice probabilities are given by

(4.9) Toa(5,0) = (Co(5) )" - mhy(e, b),
) ()
Zo’ej <C;C>* (T;fg)*

4.4.3. Trade Elasticity and Materials Share. Since the model satisfies structural grav-

(4.10) o (e,b) =

ity at the aggregate level (see Equation (5.2)) and the dispersion of match-specific
productivities ( coincides with the elasticity of trade with respect to trade costs, I
calibrate the value of this parameter to 5 from median of the estimates of price elas-
ticity in structural gravity equations (see Head and Mayer (2014)). Materials shares
a = {ay:de J} are calibrated using district-level production statistics (further de-
tails in Appendix C.3).

5. AGGREGATION AND COUNTERFACTUAL ANALYSIS FOR LARGE NETWORK
ECONOMIES

In this section, I address nuances of aggregation in a large network economy and
propose a procedure to analyze effects of policy changes through the lens of the model.
While finite economies have aggregate uncertainty, continuum approximations of finite
economies inform us about the expected values of aggregate objects of interest. If the
economy were indeed a continuum, these expected values would coincide with observed
aggregate objects. The model economy that generates the data is not a continuum
one and hence aggregate data does not coincide with their expected values. Even
so, these expected values are informative about the distribution of aggregate objects

that come from a finite economy model and especially when these distributions do
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TABLE 4.1. Gravity Regressions

c;CTEC *
sales,q sales g <m>
(1): PPML (2): MPML  (3): PPML
log(distance) -0.219 -0.712 -0.962
(0.042) (0.045) (0.045)
1{inter-state} -1.971 -2.125 -2.337
(0.105) (0.090) (0.088)
1{inter-district} -1.484 -1.852 -2.241
(0.117) (0.077) (0.068)
1{neighbor} 0.562 0.251 0.512
(0.053) (0.052) (0.048)
Fixed Effects:
Origin x Year v v v
Destination x Year v v v
Pseudo R? 0.945 0.435 0.488
Squared Correlation 0.953 0.793 0.898
# observations 1412 x 5 1412 x 5 1412 x 5

Note. Standard errors in parentheses, two-way clustered by origin—year and
destination—year. Observations pertain to all bilateral pairs between 141 districts
for 5 years. The distance between district pairs is calculated as the distance between
their centroids. A district’s distance to itself is calculated as the radius of the circle
with the same area as the district. Column (1) is estimated using a Poisson PML
specification with aggregate trade flows as the dependent variable as in Santos Silva
and Tenreyro (2006). Column (2) is estimated using a multinomial PML specifica-
tion with aggregate trade shares as the dependent variable as in Eaton et al. (2013).
Column (3) is estimated using a multinomial PML specification from equation (4.7).
Two-way clustering is done as in Cameron et al. (2011). Pseudo R? is calculated as
in McFadden (1974).

not have a closed-form characterization and simulation-based approximations can be
computationally infeasible.® The model in this paper features rich network interactions
between a finite number of firms. Interdependent decisions on input sourcing made by
this finite number of firms leads to non-degeneracy of the distribution of aggregate

outcomes. Nonetheless, to be able to solve for expected values, I consider a limiting

economy which serves as a continuum approximation of the finite economy.

13A similar principle is adopted in recent granular models of exporter entry in Eaton et al. (2013),
of multinational entry in Head and Mayer (2019), and of commuting choice in Dingel and Tintelnot
(2020). I show later in this section that this approach is theoretically consistent even with complex

network interactions between firms which features in the model here.
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In particular, I adopt the large economy model due to Al-Najjar (2004) which is char-
acterized by a sequence of finite but increasingly large economies {&, : t € N} that pro-
gressively discretizes the unit continuum.'* Along the sequence as the economy becomes
more discretized, I make additional assumptions so that the model has a well-defined
limit. The probability of meeting potential suppliers increases, i.e., lim; ,,, Ay = 00,
but at a rate slower than that at which the economy is discretized, i.e., lim;_, Ji\i_tt =0.
At the same time, match-specific productivities are drawn from stochastically worse
distributions as lim; ,,, ap; = 0. While the number of potential suppliers grows arbi-
trarily large and the match-specific productivity associated with any single supplier is
drawn from a stochastically worse distribution, the limit is well behaved because the
probability of encountering a supplier with match-specific productivity greater than
value a does not change in the limiting economy, i.e., lim;_, ., )\tagyt = 1. Furthermore,
the economy becomes discretized in a manner such that the proportion of firms and
households at every location is non-zero and finite.'®

I now proceed to characterize effective prices p (0) and wages w (o) in equilibrium

in the limiting economy, i.e., lim; o &;.

5.1. Market Access & Distributions of Effective Prices. With limit pricing, the
distribution of effective prices faced by a firm for any of its tasks is characterized
by the distribution of the offer with the second lowest effective cost to the supplier.
The following proposition provides the distribution of effective prices in the limiting

economy.

Proposition 3. For any realization of o, the effective prices of materials used by firm

b to accomplish any task, pa(b, k) converge to the following distribution ast — 0o:
By (p) = 1 — e — Aggfe=ar

where A = {Ag:d € J} is the unique positive solution to the following fized point

problem:

- < —(C(1-a Qo K «Q
1) o= S 0T (2 52)

where i, denotes the proportion of firms at o and z_g =E [zo (s)c} 16

Proof. See Appendix D.2. O

11 Appendix D.1, Definition 4 provides a formal description of such a sequence of economies.
15Ty Appendix D.1, Assumption 2 states this formally. This kind of assumption was shown to have a
well-defined limit by Kortum (1997) and put to use for a similar purpose by Oberfield (2018).
16The gamma function T (-) is defined as I'(z) = [~ e~ *m®~dm.
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While the effective price faced by individual firms varies across realizations of oy,
the cross-sectional distribution in the limit economy does not. These distributions are
parametrized by a scale parameter A; and a shape parameter (. Market access, given
by Ay, is a key object of interest because it summarizes the probabilistic access of firms
at d to inputs from all locations. The functional form suggests that firms at a location
with higher market access face stochastically lower effective prices. Specifically, if
Ay > Ay, the distribution F},, (-) first-order stochastically dominates F},, (-).

Focussing on equation (5.1), market access Aq is a trade friction (7,,0) weighted sum
of the attractiveness of all locations o € 7, i.e., nearer locations receive higher weights
because of lower trade costs 7,4 and vice versa. The attractiveness of a location o
for sourcing inputs is determined by four factors: (a) density of firms p,; (b) average
productivity among firms z_g; (c) its own market access A,; and (d) wages w,. Locations
with higher density, higher average productivity, higher market access or lower wages
are more attractive. In addition, the attractiveness of a location o is more sensitive to
its market access A, and less so to wages w, if materials share of costs «, is higher at
o and vice versa.

Although the effective price is characterized by the distribution of the offer with the
second lowest effective cost to the supplier, it is still the supplier with the lowest effective
cost that is selected. The distribution of markups faced by the firm is characterized
by that of the ratio of the second lowest to the lowest effective costs incurred by the
second best and the best suppliers respectively. In addition, every firm encounters at
least two potential suppliers with probability approaching one in the limiting econony

and this ensures that markups are well-behaved.'”

5.2. Relative Wages in Trade Equilibrium. To define relative wages in trade equi-
librium, I begin by characterizing sourcing probabilities, that is, the probability with
which any buyer sources inputs from location o for any one its tasks. Conditional choice
probabilities of supplier choice naturally aggregate to sourcing probabilities, that is,
sourcing probabilities can be obtained as the sum of conditional choice probabilities
associated with all the suppliers located at o. Conditional choice probabilities from
Proposition 1 together with properties of the cross-sectional distributions of effective
prices from Proposition 3 lead to the next proposition. This proposition characterizes

sourcing probabilities across origins by firm b, denoted by 72, (e, b).

17 A )M My (A A )Mt
For any firm b, P(|Sq(b)] <2) = ( - Tf,) + (") (Tﬁ) ( - Tlt,) . It then follows from

Assumption 2 that lim;_, ., P (|S4(b)| < 2) = 0.
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Proposition 4. For any realization of oq, the probability with which any firm b located

in d selects a supplier from o for any given task is
= Y :
Proof. See Appendix D 4. O

(5.2) 70 (e, b)

Sourcing probabilities in equation (5.2) hark back to market access defined in equa-
tion (5.1). Recall that market access is a weighted sum of attractiveness of all locations
for a particular destination. Equation (5.2) suggests the probability with which a buyer
from d sources intermediate inputs from o for any one of its tasks is given by the con-
tribution of location o towards market access of firms at d. Firms at d are more likely
to source inputs from o if there are a larger number of firms at o (higher u,), wage
w, is lower, average productivity z_g is higher or firms at o have better market access
(higher A,).

These sourcing probabilities are independent of the identity of the buyer at the
destination and therefore can be written as 70,(e, —). In the limiting economy, the
average sourcing share across all buyers in the limiting economy coincides with the
expected value given by equation (5.2). This however does not mean that the sourcing
shares across individual buyers are identical either in the finite economy or the limiting
economy. Buyers at a destination may very well differ in their sourcing shares whether
in the finite economy or the limiting economy. Formally, the law of large numbers
implies that in the limiting economy,

(5.3) LS (e85 70 (e, ).

[ now turn to characterizing relative wages in the trade equilibrium in the limiting
economy. The following proposition shows that relative wages in the limiting economy

can be obtained as a solution to the system of equations (5.4).

Proposition 5. For any realization of o = {0¢,01}, w = {wy:d € J} solves the
following system of equations:

WyL, wqlq
-4 pu— 0 _ .
(5.4) >y o )

Further, for any o and o' such that oy = o(, and o1 # 0} :

(5.5) w=w.



Proof. See Appendix D.5. O

The above proposition also shows that, for any given realization of oy, relative wages
are invariant across all networks realized for all values of o;. This concludes the charac-

terization of equilibrium wages and brings us to the definition of the trade equilibrium

below.'®

Definition 1. For any given o0y, the trade equilibrium in the limiting economy is
defined as the vector of wages w such that (a) market access at each location satisfies
equation (5.1); (b) trade shares coincide with sourcing probabilities in equation (5.2)

and (c) the market clearing condition in equation (5.4) holds.

Discussion. It is worthwhile to note that zero trade flows have different interpretations
in the continuum economy versus the finite economy. In the continuum economy, zero
trade flows between locations are rationalized by infinite trade costs. It then follows
that locations that do not trade in the initial state, would not trade in any counterfac-
tual scenario. In the finite economy, zero trade flows are an outcome of granularity and
do not imply infinite trade costs (finite number of trials of low probability events imply
a positive probability of zero successes). Therefore, observing zero trade flows in the
initial state does not preclude location pairs from trading in counterfactual scenarios.
Out of 1412 location pairs in the data, around 40% do not trade. The finite economy
approach does not impose zero trade flows for these location pairs in counterfactual
scenarios.

Furthermore, trade is driven by comparative advantage as in Ricardian trade models
(Eaton and Kortum (2002); Bernard et al. (2003)). However, the model accommodates
heterogeneity in consumer preferences and technological requirements across firms,
comparative advantage is determined by each consumer and firm demanding inputs
rather than at the level of each market. This allows the model to rationalize patterns
of firm participation in international trade within the Ricardian framework which are
typically relegated to new trade theory models such as Melitz (2003) and Eaton et al.
(2011). For example, Eaton et al. (2011) state that the Ricardian framework with a
fixed range of commodities used in Bernard et al. (2003) does not deliver the feature
that a larger market attracts more firms as observed in French data.

In this context, two facts are worth noting about sourcing probabilities in equation
(5.2). First, the elasticity with respect to trade costs comes from the shape parameter
BDingel and Tintelnot (2020) propose a granular model of commuting choice where non-degeneracy of
counterfactual outcomes arises from a finite number of individuals making residential and workplace
decisions. A similar problem of indeterminacy of the trade equilibrium across locations arises in their

setting.
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of match-specific productivities (. This unlinks the dispersion in idiosyncratic produc-
tivities from the trade elasticity. Second, they are increasing in the density of firms at
the origin p,. This feature introduces a probabilistic notion of “love of variety” within
the Ricardian framework. It also implies that zeros in firms’ sales to destinations are
an outcome of granularity and do not reflect more productive firms’ ability to sell at a

destination after incurring fixed costs.

5.3. Goodness of Fit of the Continuum Approximation. I now turn to assess
the fit of the limiting economy which serves as a continuum approximation of the finite
economy. In particular, I evaluate the approximation based on it ability to replicate
empirical regularities documented in Section 2. I start by computing equilibrium wages
in the limiting economy using equation (5.4). To do so requires the knowledge of true
values of sourcing probabilities 7%, (o, —). In their absence, we can leverage equation
(5.3) to obtain a consistent estimate of these probabilities from equation (4.7). Fitted
shares from gravity regressions obtained in equation (4.10) could be used for computing
equilibrium wages as per equation (5.4).

A key finding in Proposition 2 is that the fixed effect estimate for a firm s with the
multinomial likelihood specification is in fact its measured intensity of use, >, -\, Toa(5,b).
Fixed effect for firm s is the product of the within location component ¢,(s)~¢ and the
between location component c;¢. Equation (4.5) provides a estimator for the for-
mer. The latter is estimated in column (3) in Table 4.1 using a multinomial likelihood
specification. By properties of the multinomial likelihood, this estimate is given by
> ser, Dber Tod (8, 0). Together, they imply that the fixed effect estimate for firm s
can be expressed as (co(s)7¢)" = 3, 1 Toa(s, b). According to the model (in equation
(4.2)), this fixed effect is related marginal costs as ¢,(s)~¢. This directly features in
equation (4.9) and plays a vital role in enabling the model to reproduce the empir-
ical regularities. Apart from this, goodness of fit is governed by two factors. First,
imperfect correlation between data and fitted values in Table 4.1, Column (3) causes
differences in myq(e, —) and 7%,(e, —). Second, estimating equation (4.3) is parsimo-
niously specified as it does not allow heterogeneity in trade frictions faced by firms.
While the data is at the firm-to-firm level, fixed effects are only at the firm and origin—
destination level. Third, equilibrium wages computed for the limiting economy differ
from data. These differences capture the granularity of data which are assumed away
in the limiting economy. Finally, estimates of material share of costs a and dispersion

in match-specific productivities ¢ also affect predicted values.
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TABLE 5.1. Model Fit: Margins of Firms’ Sales

(1) (2) (3)

Data:
Intensity of Use 81% 93% 83%
Average Customer Size 19% ™% 17%
Model:
Intensity of Use 5% 65% 68%
Average Customer Size 25% 35% 32%
Fixed Effects:
Seller x Year — v —
Originx Year — — v
Data Level:
Seller x Year ° — —
Seller x Destination x Year — ° —
Originx Destination x Year — — .
# observations 5.6x106 18.2x10% 58,390

Note. Column (1) reports the contribution of factors: intensity of use and average
customer size, to the variance of firms’ sales (as per equation (2.1)) in the data
(top panel) and in the model (bottom panel). Column (3) reports the contribution
of those factors to the variance of firms’ destination-specific sales (as per equation
(A.2)). Column (5) reports the same for trade flows between districts (as per equation
(A.3)).

Table 5.1 reports how the estimated model performs in comparison to the empirical
regularities documented in Section 2. Table 5.1 shows that the intensity of use margin
explains a vast majority of the variation in firms’ sales in the estimated model as
is the case in the data. This is true across all columns in the data qualitatively.
Quantitatively, all columns except (3) provide a reasonably good fit. In column (3),
the loss of fit can be attributed to the second factor.

5.4. Computation of Counterfactual Outcomes. I operationalize Propositions 3,
4, and 5 for counterfactual analysis by expressing them in changes. The following defi-
nition states that and motivates the algorithm for evaluating counterfactual outcomes

in response to shocks that derive from a change in the aggregate state oy to of.

Definition 2. For any change in aggregate state oy to oy, equilibrium change in wages

W = {;:de J} and welfare V = {1751 de J } are characterized the following
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system of equations for all realizations of oy or o/:'

A= 3 mha (o, =) B, 0o Ay

— g ~—((1 O‘O)A\ao
(o) =
d
wowoLo o O/\ 0 ﬁ}dded
1—a, _zd:ﬂ-od(.?_)ﬂ-od( 7_) 1— oy

where § = {god :(0,d) €T 2} is function of shocks that capture the resultant effect of

change from oy to oy,

With this definition of the equilibrium in changes in the limiting economy, aggregate
and firm-level counterfactual outcomes in the limiting economy are computed in three
steps. First, I evaluate aggregate and firm-level outcomes such as intensity of use
and sales in the limiting economy in the initial state. Second, I evaluate changes in
aggregate outcomes when going from the initial state to the counterfactual state. This
is done using a tatonnement algorithm similar to Alvarez and Lucas (2007) and Dekle
et al. (2008). Finally, I evaluate aggregate and firm-level outcomes in the limiting
economy in the counterfactual state. Details of the procedure are stated in Appendix
D.7. The counterfactual outcomes thus computed for the limiting economy correspond
to the expected value of outcomes for the finite economy in the counterfactual state
since the limiting economy is a continuum approximation of the finite economy. Having
set out the procedure to compute counterfactual outcomes, I turn next to evaluating

the impact of the 2017 GST reform on Indian firm-to-firm production networks.?"

6. THE IMPACT OF 2017 GST REFORM ON INDIAN FIRM-TO-FIRM PRODUCTION
NETWORKS

When India adopted the VAT in the early 2000s, its implementation was uneven.
India has a federal system of government — one that divides the powers of government
between the national and the state governments. Commercial taxation being overseen

by the state government, individual states implemented their own respective VAT

19The expression for welfare changes is derived in Appendix D.6.
2OAppendiX E illustrates how the model can be used to assess the consequences of micro- and macro-
shocks to the spatial economy through two other quantitative applications: one considering uniform
decline in cost of trading outside own district and the other studying improvements in allocative
efficiency following neutralization of firm-level distortions.
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systems. This resulted in over 30 such systems coming into place across India. While
this increased formality and tax compliance, it had the unintended consequence of
regional segregation in organization of production, for three reasons.

First, VAT increases formality because firms prefer to source inputs from other firms
within the system to be able to collect tax credits on input purchases. Consequently,
individual firms preferred to source inputs from firms within their own state’s VAT
system as opposed to one in a different state or VAT system. Second, the national
government levied a sales tax on firm-to-firm transactions across state borders which
made more efficient suppliers of intermediate inputs relatively more expensive if they
were in a different state. Third, there were cumbersome inspections, especially at state
borders that caused logistical delays. In July 2017, the federal government in India
abolished all state VAT systems and introduced the Goods and Services Tax to serve
as a single national VAT system. This eliminated sales taxes on inter-state movement
of goods and harmonized the VAT structure across states in an attempt to reduce such
barriers to intra-national trade.

In this context, I consider the impact of a 10% decline in trade costs between district
pairs crossing state borders to understand the potential impact of the GST reform on
production networks in intra-national trade through the lens of the model. Changes in
firms’ sales to other firms can be decomposed into changes in its intensity of use and

changes in its average customer size as follows:

A% Upstream Margin

ASales "Alntensity of Use  AAverage Customer Size

Sales  Intensity of Use Average Customer Size

A% Downstream Margin

Alntensity of Use = AAverage Customer Size

Intensity of Use Average Customer Size

J/

Second Order Term

To determine the relative contribution of the upstream and downstream margins to
the dispersion in changes in firms’ sales, I apply a Shapley decomposition (see Shorrocks
(2013)). The Shapley decomposition determines the expected marginal contribution
of each of these margins and the interaction term to the total variation in changes in
firms’ input sales; intuitively, it assigns the fraction of the R? of a regression that is
due to each set of explanatory variables. Columns (1) and (4) in Table 6.1 report the
results of this decomposition. The top row suggests that over half of the variation in
changes in firms’ sales can be attributed to endogenous changes in the network or the
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TABLE 6.1. Margins of Changes in Firms’ Sales

A% Upstream Margin A% Downstream Margin
o 2 6 @ O (6)

Overall 57.3% 60.4% 65.7% 33.2% 32.1%  20.1%
Gujarat 36.9% 48.9% 60.9% 44.9% 42.8% 23.9%
Maharashtra 40.9% 62.5% 60.4% 29.5% 30.9% 24.2%
QOdisha 36.7% 56.9% 70.4% 45.5% 29.8%  15.5%
Tamil Nadu 40.0% 61.5% 60.2% 33.9% 33.0% 24.3%
West Bengal 40.0% 61.0% 61.5% 30.9% 30.1% 23.7%
Data Level:

Seller x Year ° — — ° — —

Seller x Destination x Year — ° — — ° —

Originx Destinationx Year =~ — — ° — — °

Note. This table reports the contribution of changes in upstream and downstream
margins to the variation in changes in firms’ sales (columns (1) and (4)), firms’
destination-specific sales (columns (2) and (5)), and trade flows (columns (3) and
(6)). These are calculated using a Shapley decomposition overall (top row) and when
firm-year observations are split by state.

upstream margin while a third can be attributed to the downstream margin. When
considering variation among firms within each state, the upstream margin accounts for
over a third of the variation. The lower contribution is because the incidence of the
shock is at the state borders, so the contribution of the upstream margin is not as high
as that seen in the top row.

A similar decomposition can also be made at a more disaggregated level for firms’
destination-specific sales and at a more aggregated level for trade flows between dis-
tricts. Columns (2) and (5) report the results of the decomposition for changes in
firms’ destination-specific sales. Around three-fifths of the variation in changes in
firms’ destination-specific sales can be attributed to the endogenous changes in network
structure while the downstream margin accounts for under one-third of the variation.
Columns (3) and (6) report the results of the decomposition for changes in trade flows
between districts. Around two-thirds of the variation in changes in trade flows can
be attributed to the endogenous changes in network structure while the downstream
margin accounts for a fifth of the variation. Figure 6.1 depicts the relative contribution
of changes in the upstream margin with respect to changes in the downstream margin
towards changes in destination-specific sales of firms across districts.

A few points are in order. First, this decomposition is of sales to other firms and

so would not exist in models without input-output linkages. Second, in models with
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exogenous production networks, i.e., with Cobb-Douglas technologies between firms,
intensity of use does not respond to shocks. The large variation in the upstream margin
would therefore be missing. Finally, in models with non-Cobb-Douglas technologies
that endogenize the intensity with which existing suppliers are used but where the
extensive margin of firm-to-firm trade does not respond to shocks, the explanatory
power of the upstream margin would be understated. This is because changes in
intensity of use accrue not only from changes in intensity of use by existing customers
but also from changes in the number of customers. By allowing for substitution across
both existing suppliers and new potential suppliers, the model is not only more general
but also more tractable since it does not require calibrating the extensive margin of
firm-to-firm trade to observed data.

7. CONCLUSION

This paper developed a new framework for analyzing aggregate and firm-level con-
sequences of shocks to the spatial economy when customer-supplier linkages between
firms evolve endogenously. I documented that Indian firms with higher sales to other
firms tend to be used more intensively by other firms and tend to have larger cus-
tomers. Firms’ intensity of use explains a vast majority of variation in their sales to
other firms. The model explains this through a single dimension of firm heterogeneity:
production costs. Firms with low production costs are used more intensively by other
firms and since their customers use cheaper inputs intensively, they lower production
costs and become larger themselves. Furthermore, firms differ not only in their relative
position in the production network, but also across space thereby facing different wages
when hiring labor as well as different trade costs when sourcing inputs from potentially
multiple locations.

Interdependence of link formation between firms in general equilibrium models of
network formation typically restrains the use of simulation-based estimation to a real-
istic setting with very large numbers of firms. On the contrary, the procedure developed
here makes estimation and counterfactual analysis both scalable and tractable. Firms’
intensity of use was shown to be a sufficient statistic for their production costs — a key
endogenous object of interest. As a result, estimation did not necessitate full solution of
the model to obtain the distribution of production costs. Besides, counterfactual anal-
ysis did not require large-scale simulation either and was done under a large economy
approximation to resolve aggregate uncertainty. In an empirical application motivated

by the 2017 GST reform in India, I show that following a 10% decline in inter-state
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FIGURE 6.1. Margins of Changes in Firms’ Destination-Specific Sales

Maharashtra

Tamil Nadu
Gujarat

West Bengal
Odisha

Note. Districts are shaded by contribution of changes in upstream margin relative
to that of downstream margin in destination-specific sales of firms in them. Darker
shades reflect lower values. For the median district in Maharashtra, the relative
contribution of the upstream margin is 1.85 times that of the downstream margin, in
Gujarat it is 1.44 times, in Tamil Nadu 1.5, in Odisha 2.18 and in West Bengal 1.4.
The data pertains to 2015-2016. Relative areal extent of states is not up to scale.
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border frictions over half of the model-implied variation in changes in firms’ sales to
other firms can be explained by endogenous changes in the network structure.

The framework developed here can be directly applied to answer questions that could
be broadly classified as market integration, technology improvements, and improvement
in allocative efficiency; nevertheless, it can serve as a fertile baseline model to answer
a wider variety of questions where changes in the production network across firms
can lead to aggregate consequences. In pursuit of parsimonious parametrization, the
model abstracts from several realistic features of the network economy such as sectoral
heterogeneity in technological requirements, supply chain dynamics, industry dynamics
of entry and exit, heterogeneous search frictions, and richer bargaining environment

between buyers and suppliers all of which are potential avenues for future research.
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Online Appendix
APPENDIX A. NETWORK MARGINS OF FIRM HETEROGENEITY AND TRADE

A.1. Margins of Firms’ Sales. The sales of a firm s located at o to other firms can

be decomposed into three factors as follows:

upstream margin
7\

> be Tod(S, bf " > bet Tod(8,0) x purchases,(b)
N0<5) . Zbe/\/{ 7r0d(57 b) ’

Vv
downstream margin

(A.1) sales,(s) = N,(s) X

where sales,(s) denotes sales of firm s to other firms, N,(s) denotes the number of
customers of s, purchases,(b) denotes the purchases of firm b from other firms, and
Toa($, b) denotes the share of purchases of firm b that are from s. The first two factors
constitute the upstream margin and capture the intensity of use of s by all other firms.

Specifically,

7r0 s,b)
intensity of use,(s) = N,(s) X ZbEM al Z Tod(8, D).
beM

The third factor constitutes the downstream margin and measures average size of
customers that s sells to.
> e Tod(s,b) x purchases,(b)

2 ber Tod(5, D)

Relative to the main text, the terms here are subscripted by o and d which denote

average customer size,(s) =

locations where s and b are, respectively. This is to maintain uniformity of notation
as | construct similar decompositions of sales specific to locations, at a disaggregate
level for sales of s to all firms at a destination d and at an aggregate level for sales
of all firms from an origin o to a destination d. I construct a decomposition of firms’

destination-specific sales into three factors as:

upstream margin
ZbEMd T‘-Od(s’ b)
Nod(S)
> bemm, Tod(s,b) x input costs,(b)
>< ?
Zbe/vld Wod(sa b)

Vv
downstream margin

-~

(A.2) salesoq(s) = Noa(s) x

(.
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where sales,q(s) denotes input sales of firm s to customers at d and N,(s) denotes
the number of customers of s who are located at d. Table A.1 provides results of the

decompositions in equations (A.1) and (A.2).

A.2. Margins of Intranational Trade. Trade flows between locations are aggre-
gated from sales of all firms from an origin to all firms at a destination. In the data,
among all possible pairs of locations(districts), around 40% do not trade at all. For
location pairs that trade with each other, I construct the following decomposition of

trade flows into four factors:

upstream margin
N

> sem, Noa(s) y > sem, ZbeMd Tod(S, D)
Noa ZseMo Noa(s)

ZSEMO ZbeMd Toa($S,b) X purchases;(b)

Zse/vlo ZbeMd Tod(8,b) ’

downstream margin

(A.3) sales,g = N,q X

X

N

where sales,g = > o0 D e M, sales,q(s,b), Nog denotes the sellers from o that sell
at d. In this decomposition, the first three margins capture the role of the upstream
margin whereas the third margin captures the role of the downstream margin in driving
differences in aggregate trade flows. In considering this decomposition, I depart from
the trade literature where these margins are regrouped such that the first margin is
called the extensive margin of trade defined as the number of firms from o that sell at
d and the remaining three margins are together called the intensive margin of trade
average sales across the firms from o that enter d. ?' This is so as to emphasize the
role of endogenous network formation and cross-border supply chains in determining

aggregate trade flows. Table A.2 reports the results from this decomposition.

APPENDIX B. AN EMPIRICAL MODEL OF ENDOGENOUS SPATIAL PRODUCTION
NETWORKS

The model economy & = {M, L, T} consists of many firms (M) and households
(£) at many locations (J). Firms produce using local labor and intermediate inputs
sourced from suppliers potentially spread across multiple locations. Each household

supplies one unit of labor inelastically to local firms. Firms rebate any profits to

2lFor example, see Eaton et al. (2011) and Fernandes et al. (2018) for such decomposition of the
margins of international trade between countries where it is documented that the extensive margin
accounts for over half the variation in trade flows between countries.
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TABLE A.1. Margins of Firms’ Sales: Contribution to Total Variance

Sales Destination-Specific Sales
(1) (2) (3) (4) (5)
Intensity of Use 81% 82% 93% 79% 80%
# Customers 35% 36% 37% 23% 22%
Intensity per Customer 46% 46% 56% 57% 58%
Average Customer Size  19% 18% ™% 21% 20%
Fixed Effects:
Seller x Year — — v — —
Originx Year — v — — v
Destinationx Year — — — — v
Data Level:
Seller x Year . ° — — —
Seller x Destination x Year — — ° ) .
4 observations 5.6x10% 5.6x10% 18.2x10% 18.2x10% 18.2x106

Note. Columns (1) and (2) report the contribution of factors: # customers, intensity
per customer, and average customer size, to the variance of firms’ sales as per equation
(A.1). Column (3), (4), and (5) report the contribution of those factors to the variance
of firms’ destination-specific sales as per equation (A.2).

local households. Trade between locations is subject to iceberg trade costs denoted by

Tod Z 1.

B.1. Household Preferences. The utility function for any household i at location d
is defined over a discrete number of tasks (also indexed by k € K = {1,--- , K}) as:

ug (i) = | ] aa, k)7,

kek
qa(i;n) = Y Goa(s, i, k),
s€84(i)
where ¢q(7, k) is the quantity of goods consumed to fulfill need k and S4(¢) is the
restricted set of suppliers that ¢ encounters due to search frictions.
For task k, household 7 chooses the supplier that offers the cheapest price, that is,

{mod (s, 1, k) Co(S)Tod} ’

aod(S,1, k)

B.1 “(i k) = i
(B.1) sq(i, k) arg min

where m,q($, 1, k) is the markup charged by s for task k. The markup is determined

by how much lower the effective cost faced by the best supplier is relative to the second
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TABLE A.2. Margins of Intranational Trade: Contribution to
Total Variance

(1) (2) (3) (4)

Intensity of Use 83% 83% 88% 89%
# Sellers 59% 57% 61% 58%
# Customers per Seller 8% 10% % 10%
Intensity per Customer 16% 16% 19% 21%

Average Customer Size 17% 13% 12% 11%

Fixed Effects:

Origin X Year — v — v
Destinationx Year — — v v

Data Level:

Origin x Destination x Year . . ° °

# observations 58,390 58,390 58,390 58,390

# dropped observations (zeros) 41,015 41,015 41,015 41,015

# district pairs 1412 x5 1412 x5 1412 x5 1412 x5

Note. This table reports the contribution of factors: # sellers, # customers per
seller, intensity per customer, and average customer size, to the variance of trade
flows between districts, as per equation (A.3).

best. The effective price faced by i for task k& denoted by p4(i, k) is then given by

. . Co(8)Tod
(B.2) pa(i, k) = min {—} :
seSa@\ {360} L oals, i, k)

Now, taking {p4(i, k) : k € K} as given, the household’s indirect utility function can
be defined as:

B.3 Va(i k)
(B.3) i) = e Tt
subject to Zpd(i, k)qd(i, k?) = Wq + Hd
keke
ZSEM Hd(b) . . 7.
where II; = ===4—— is the per capita profit rebated to households residing at o.

Ly

B.2. Technology and Market Structure. The production function for any firm b
at location d is defined over labor and a discrete number of tasks (indexed by k € K =

{1,--- ,K}) as:
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1—ag ma(b, k)< od
ya(b) = 24(b) (M) (er/c (b, k) > |

1—&(1 Qg

ma(b, k) = > moa(s, b, k),
5€84(b)
where [;(b) is the amount of labor input used by firm b, mg4(b, k) is the quantity of
materials utilized to accomplish task k, z4(b) is the idiosyncratic Hicks-neutral produc-
tivity with which firm b produces, and Sy(b) is the restricted set of suppliers that b
encounters due to search frictions.
For task k, firm b chooses the supplier that offers the cheapest price, that is,
Mod (8,0, k) co(S)Toq
(B.4) sy(b, k) = arg sglgil(l) { (aod(é‘,??, k() ) } .

With limit pricing, the markup is determined by how much lower the effective cost

faced by the best supplier is relative to the second best. Hence, the effective price faced
by b for task k, denoted by p4(b, k), is given by

(B.5) pa(b,k) = min {ﬂ} .

seSa\ {30k} L oa(s, b, k)

Taking wage wy and effective prices {p4(b, k) : k € K} as given, the firm’s unit cost

function can be defined as:

B.6 cq(b) = min walqg(b) + b,k)myg (b, k
(B.6) 10) = o pmiyercyy V2 ) kez,cpd( Jma (b-K)
La(b) \ ' b, k)" \ ™
subject to z4(b) (A) (H’“E’C ma(b, k) > =1
1— g Qq

With the cost function as defined above, the profit of a firm s located at o can be

expressed as

Co() od
Z Z Mod (8,0, k) )mmod(s,b, k)

beM ke
Co( )Tod .
+ Mod (8,1, k) — 1) ——"———qoa(s, 1, k),
zezﬁgC aod(8727k>

where mq(s, b, k) denotes the quantity of goods sold by firm s to customer b for task k
and goq(s, 1, k) denotes the quantity of goods sold by firm s to households i for task k.
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The quantity of goods sold mq(s, b, k) or q.q(s, 1, k) is positive if s is the most effective

supplier for task k£ and zero otherwise.

B.3. Equilibrium Definition and Characterization. The aggregate state of the

economy is denoted by 0 = {z, 7,8, a} where

z={2,(s):s € M},

7= {704 (0,d) € T*},

S={S4(i):i e LUM}, and

a = {aw(s,i,k): (s,i,k) e M x (LUM) x K}

An allocation in this economy is represented as £ = {l (o), m (0),q(0),y (o)} and is
defined as a set of functions,

(o) = {la(b;o) - b e M},
= {moa(s,b,k;0) : (s,b,k) € M*> x K},
= {qoa(s,i,n;0) : (s,i,k) e M x L x K},
Y (o) = {yo(s;0) : s € M},
that map the realization of the state to intermediate input and labor quantities,

quantities consumed and quantities produced. A price system is represented as o =
{c(0),p(0),w (o)} and is defined as a set of functions,

c(o) ={c,(s;0):s € M},
p (o) ={pa(i,k;0): (i,k) € (LUM) x K},
w (o) ={wi(o):de T},

that map the realization of the state to tasks’ prices for firms, needs’ prices for house-
holds, wage at each location and marginal costs of firms. This leads to the definition

of equilibrium in this economy as follows.

Definition 3. For any given state o, an equilibrium in this economy is defined as an
allocation and price system, (&, o) such that (a) households select suppliers for needs
and firms select suppliers for tasks according to equations (3.1) and (B.1) respectively;
(b) firms set prices for other firms and households according to equations (B.5) and

(B.2) respectively; (c) households maximize utility according to equation (B.3); (d)
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firms minimize costs according to equation (B.6); and (e) market clears for each firm’s

goods and for labor at each location as follows.

> la(b) =

beMy
SO IR = )
ieL kek a"d $,%, k
Tod(s)mg(b, k .
ZZ il 82/{ )1{S:Sd(b7k)}:90(s)
beM keK

APPENDIX C. TAKING THE MODEL TO DATA

C.1. Proof of Proposition 1. Consider a pair of firms s located in o and b located
in d. Now, suppose the marginal cost of firm s from o and it’s cost of shipping goods
to d are ¢,(s) and 7,4 respectively. For any task k and match-specific productivity
aoq(8, b, k) = a, the effective cost incurred by s of delivering its goods for task k by b
is C(i% Supplier s is selected by b for task k if b encounters s with match-specific
productivity a and b does not encounter any other supplier for whom it is effectively
less costly to deliver the good (including the event that b meets s and the match-specific
productivity realized is higher than a). The probability with which b selects s for any
of its tasks with match-specific productivity a is given by:

70.(s,b,k | 09,01) = — X H (1 — _[[D <ao/dEs )ZO/Z) < Co(z)Tod))

s'eM

A A Co (8 )Tora Co(8)Tod
- m(1-2p <
M P ( 2 n( M (aold(s’,b, Do

s'eM

Since A = o(M), considering 2+ < 1 and using the approximation In (1 + z) ~ z for

|z| < 1, the above expression simplifies as:

A A Cor (8 )Ty ()T

Ao gl S
s'eM Od(

Taking expectation over all possible realizations of o7 = {8, a}, we obtain:

ng(s,b, k) = Eio) [ﬂgd(s,b, k | 00,01)]
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A & A To’d CO(S)TOd
- 2N p < dF,
M/O ( M (ao/d (s',b, k) a )) (@)

s'eM
A o A C /(SI)T 'd _
-4 ~ 2 NT P agals, b, k) > 2T d(1—aa <)
M/ eXp( M (CL d(87 ) )— CO(S)TOd a (/0>
ao s'eM
Aa§ /OO Aa$ (col(s’)To/d ) (co/(s’)To/d )C
= ex S—— 1(=——""2a>a — """
M J., P ( M = Co(8$)Toa 0 Co(8)Tod
A

/
- = 1 Ma < ag C(fc*lda
M Co(8)Tod
e M
1 > 1 CO/(S/)To/d - — _
E— —_ o\ Joa d(—a=¢
M o exp< MZ (Co(S)Tod ! (=)
—¢ —C
— CO(S) 7—od _CF(1>
ZSIEM cO'(‘S/)_CTo’d
CO(5>_C7—o_dC

S vem o (8) T

Here, in the fifth line we utilize Assumption 2 which implies that in sufficiently large

co(s)Tod

0 for all firms s’. Since m,q4(s, b, k) is independent of the identity of the task k, we write

o . A ot ()7,
economies lim;_, )\taat — 1l and lim; . ap¢ — O such that 57 ZS’GM 1 (Ma < a0> —

70 (s,b) = 7°,(s,b,k). Further, since 7°,(s,b) is independent of the identity of the

buyer at any location d, we can write 70,(s, —) = 7°,(s, b).

C.2. Proof of Proposition 2. In the context of this paper, the multinomial random
variable counts the number of successes in each of the M categories (one for each
other supplier s), after K independent trials (one for each task associated with b). Let
70,(s,b) denote the probability of success and Ko4(s,b) denote the number of successes
in category s, the probability of observing {K,q(s,b) : s € M,,0 € J} conditional on
the number of tasks K4(b) is

5,0))" 1)

P ({Koa(s,0) : s € M}) = K! H
seM

where Y0\ mog(s,0) = Tand 37 ., >0 oy Koa(s,b) = K.
The likelihood for the complete sample, K = {K,q(s,b) : (s,b) € M?} with proba-

bilities TI® = {7%,(s,b) : (s,b) € M?} | scaled by a factor K is:
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(72, (s,b)) Koalsh) \
¢ (K| 1I°) K'H(H o )

sent N\ Hodl(s,
d(s b)
— I
bEM sEM Koals
S b Zkelcl{s sdbk)}K
—k [T
bEM sEM Koa(s, b)!
" urchases 4 (b,k)
H H od s b > ke 1{8:sd(b’k)}ppuich:zzgd(b)
M se M Kod(S,b)!
Ykek l{s:s’:l(b,k)}purchasesd(b,k)
o ] T G
beM seEM Koa(s,)!

sales,q(s,b)

(7T0d<87 b)) purchases j(b)
K! b
H H Koa(s,b)!

beM seM
Tod(8,b)
(79, (s, b))
= K o
VY ey ey

Therefore, the log-likelihood is proportional to:

£ (K| T Z(Zwodsb>1n(ca(> oi)

seM \beM
—ZMm<ZO<H®>
deJg s'eM

Note that c,(s) = ¢,(s)co and >, o (8) 7475 =32, 57,5, therefore the likeli-
hood equations for ¢,(s) are given by:

D Zbe/vl Wod s, b) Z ¢
50( ) o’ 7_o’d

The likelihood equations for 7'0_dC are given by:

(ZbeMd > sem, Tod(S; b)> Mq <Z co(s)c>

—¢ —¢—C
Tod Zo’ Co’ Tord




My .
= ¢ <%
Zo’ Co Tord

- _ (Zbe/\/{d ZseMo Tod($, b))

:Tod_

s
> vert, LaToal s #)

—¢—¢
This then provides us with an estimator for =2 as follows:

o Co, To’d
— (Zbe/vld ZseMo Tod (S, b))
Tod = M —
ﬁco
Zo/ Cor ' Torq
CO_CToidC _ ZbEMd ZSGMO 7T0d(57 b)
> € T My
1
= Tod(®,b)
beMy

C.3. Estimation of Material Shares. The distribution of markups from Proposi-
tion 6 provides expressions for value-added share of gross output (VA/GO), . Using

equation (D.1), materials share «, is calibrated as
ap = (1+1/¢) (1 = (V4/co0),),

where (VA/GO), across districts are constructed using aggregate production statistics
as follows.

[ obtain district-level sectoral GDP {V AJ} from Nielsen Analytics, a private data
firm and industry-level data on value-added share of gross output at the national level,
{(VA/GO)j jET } from the World Input-Output Database. Using these, I construct
a measure of value-added share of gross output at the district level as

> e VAL

S ez s
JEL (VvA/co)’
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[ use data pertaining to six industry groups for this calculation. They are (a) Mining
and Quarrying; (b) Construction; (c) Manufacturing; (d) Electricity, Gas and Water
Supply; (e) Transport, Storage and Communication; and (f) Trade, Hotels and Restau-

rants.

APPENDIX D. AGGREGATION AND COUNTERFACTUAL ANALYSIS IN NETWORK
ECONOMIES

D.1. Continuum Approximation for Large Network Economies. The following

definition formalizes the notion of the limiting economy in the context of this paper.

Definition 4. Consider a sequence of finite economies {&; : t € N} where & = {M,, Ly, J;}
is such that the t'" economy has the form M; = {mq,--- ,mp,} C [0,1] , £; =
{,--- ,0r,} C [0,1) and J; = J. The uniform distribution on M, is given by
UM (My?) = % for all MY C M,. Similarly, the uniform distribution on £; is given by
Ul (LY = i—g for all LY C L£;. Then, {&, : t € N} is a discretizing sequence of economies
if it satisfies:

(1) My C My and L; C Ly for all ¢,

(2) limy oo UM (M N [ay, ap)) = U (Jay, ap)),

(3) limy oo UL (L N [ar, an]) = U ([, an)),
where U (o) denotes the uniform distribution with support over [0,1] and [a;,a] C
[0, 1].

Assumption 2. The discretizing sequence of economies {&; : t € N} satisfies the fol-

lowing conditions:**

(1) {\,ao, : t € N} is such that A, = 0 (M) and Mag, = O(1)
(2) {Mys,Lay:d € J,t € N} is such that My, = © (M;) and Lq; = O (L) for all
de J

D.2. Proof of Proposition 3.

D.2.1. Joint Distribution of the Lowest and the Second Lowest Effective Costs. We be-
gin by characterizing the joint distribution of the lowest and second lowest effective cost
available to buyer b located at d, ﬁpd (p(l),p@)) =P (pfl (b, k) < pW, py (b, k) > p(2)).
To do so, we evaluate the probability with which b receives exactly one offer with an

effective cost no greater than p™ and no other offers less than p® (> p™). The lowest

22For any two functions f(n) and g(n), f(n) = 0(g(n)) = lim,_ s % =0and f(n) =O(g(n) =
lim sup,,_, o ‘583‘ < oo and limsup,,_, | % [> 0.
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cost offer p™ can be from any one of the locations in 7. We evaluate the probability
with which this offer is from any given location o and sum it across all locations. The
probability with which b receives one offer with an effective cost no greater than p(

from o and no other offers less than p across all locations is given by:

)P (s <o) o7 d
A co(8)To

(1 M]P) <aod(sblacl) — p( )>
/\ S)T, 2)

( M <add8bdlcfi <p( )

S)T, (2) Moy
XH o' ¢{o,d} <1 (a/d (s,b,k) Sp >>

1 M aod(s:b,k) —
Co(8)Tod (2) Mo
< (1 3P (i <0?)
A CDI(S)To’d (2) Mo
% Loz (1—M]P’<m =P ))

Under Assumption 2, the probability with which b encounters exactly one supplier

(Mo NAp (< S)Tod p ) ifo=d

who can deliver at a cost no greater than p() and encounters no other suppliers with
offers less than p® across all locations is given by:

= ) 1 )Tod
F, Mo < pm My P < p@
p ( Z a (aod (5,0, k) =P )P Z s aold(s b k) =7

Using the limit limy;_, )\taat — 1, this can be further simplified as A, (10(1))C exp <—Ad (p(Q))C)
where Ag =3, o7, E [co(-)7¢] is obtained as follows:

Agp® _ZAMO <aods—)bk)
St i (05

= (Z NoTo_dCE [CO(.)—C}) P°
Ag = Z,LLOT(;iCE [CO(~)*<}

IA
i
S~
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The density function is then obtained by the negative cross-derivative of F,, (pM, p®)

as follows:

OpMop!
o (07 (o (-1:6))
 opM op?

= A3 (pp) Al

D.2.2. Distribution of Effective Prices. We derive an expression for F,,(p), that is,
the probability with which any firm b located in d faces an effective price no greater
than p for one of its tasks k. Firm b faces an effective price no greater than p if the

second-lowest cost available to it is no less than p. This is obtained as:

Fulo) = [ (/(

=1 — Agp©exp (—Aap*) — exp (—Aap®)

2)

F(p®,p®) dpu)) dp®

D.2.3. Derivation of Market Access.

col+) = wiiao (Hpo('7k)l/K>

1-a (HkK:1 e k)l/K> e
Zo(*)

= E[c(’)¢] =E

K

Hpo : ao</K

_ wo_g(l—ao) H]E [Po('; k)*aoc/x} E [ZO()C}
k=1

—C(l ao) E

E [Zo(')q

— S (2 — _0) Aao_g
w, I ooz

This implies that {Ag},., solves the following fixed point problem:

Ag =3 o oy ST (2 - ?) Ace
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It can be similarly shown that effective prices for needs faced by households is also
given by F,, (-) The following lemma states that the above fixed point problem that
solves for market access is well-defined in the sense that it admits a unique positive

solution. The proof strategy follows from Allen et al. (2020).

Lemma. The following system of equations

Ad = Z RodAgoa

— K
Roq = T(;jcuozgwo_g(l_a“)F (2 — %) ASe.

(1) has at least one positive solution
(2) has at most one positive solution (up to scale)

(3) the unique solution can be computed as the limit of a simple iterative procedure.

Proof. First, I establish existence of positive solution to the system of equations. De-
fine operator T : RY, — R7_ where T (A) = (3, Ryt A%, -+, Y R,7A%). Note
that all components of R,; are positive and finite. Then, by construction, for any
d, not all R,qs are zero. Therefore, for any A > 0, > R, A% > A > 0. Fur-
ther, there exists A < oo such that > R,qA%> < A. Now consider the operator
T : A — A defined by T(Ay,--+,A;) = (3, RuA%, -+, > R,;A%)". Suppose
A={AeR], | A<A; < AVd} Then, if A > 0, it follows that T'(A) > 0. Note
that A is closed and bounded. Since A C R],, this implies that A is compact. Fur-
ther, A is non-empty and convex, and 7" is continuous. Then, by Brouwer’s fixed point
theorem, T (o) has a fixed point. This establishes existence of a solution the system of
equations.

To establish uniqueness, let’s suppose by way of contradiction that the system of
equations has two different solutions A, A that are not linear transformations of
each other. Denote a = maxy % and ¢ = miny %. Notice that g > 1. Thus the

d
system of equations can be expressed as:

_ e ,
Suppose d = arg maxy (ﬁ and o = min «,, then we have:
d
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d =
O
d
(1) 1—a, 1—ao
5, ma (47 (a)
— o 0 =a
d
1—ao
> Roga' ™ (AEO))
= 10 =M
d
1—a,
>, For (A)
- 0 al e >aq
d
— a* <1
— a<1

Similarly, we can show that @ > 1. This implies that 2 < 1. But by construction
=1or A® = AW This establishes

S|

> 1. Therefore, it must be the case that

SRS
2l

uniqueness.
Next, I show that the solution to the system of equations can be obtained via a

simple iterative procedure. Starting from any strictly positive A(O), we construct a

sequence A successively in the following way,

(t) ZR tl

_ AW AW
Denote a) = maxy Gy and a¥ = miny A(t 7. Notice that
d

Ql
E
WV
—_

12
—
=
N

_ A(t) X
Suppose d = arg max, (AT'LU and o = min «,, then we have:
d

(t)
AUZ — a(t)
At
d
-1\ 1—ao 1-
T Rt (H20) 7 ()
= A(t 1)
1—a,
R 7(140 )
— 20 Foi (a(tfl))lfﬂ > g

©
AJ
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a®

g =1
(att=1)=

o > 1. This implies the following

o a0
__a

Similarly, we can show that

(@t-1)""% = (gt-0)*
a®  (atv)'
— — <K —
a® — <Q(t71))1_a
(1)
< >~ 7
— (Q(t—l))lig

a®  gt=1

= 40 S gD

Since 2‘2—2 > 1Vt, this implies that lim; . ZE—:; = 1. That is, the solution can be

compute& as the limit of a simple iterative procedure. O

D.3. Distribution of Markups. The following proposition provides the distribution

of markups.

Proposition 6. Markups over marginal cost of lowest cost supplier moq(-, -, ) are dis-

tributed according to the following Pareto distribution:

Fn(m)=(1—m ) 1{m > 1}.

Proof.
p b7k ~ * p bak
P (2 < m L nao k) = ) = (550000 = PO ) =
d\"
mgm_ﬁz(ﬂnjm%@) .
=1- dp
b,k
0 Féd (pdsfn ))
=1-m°

The shape parameter of the distribution of potential markups is (, the same pa-
rameter that governs dispersion in match-specific productivities. With lower (, higher
markups are more likely since high match-specific productivities are more likely and
hence are larger gaps between costs to the best and second best suppliers. Moreover,

the distribution of markups is the same in any destination. An aggregate implication
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that follows from the distribution of markups is that the share of variable costs in gross
output is given by ﬁ at all locations. This in turn implies that value-added share
of gross output at location o is given by:

1 — o, + Y

ey

D.4. Proof of Proposition 4. The probability with which any firm at d sources from

(D.1) (V4fco), =

firms at o for any of its tasks is given by

M, 1
0 ) — : 7o : 0 o
Tod (.7 ) (th—ftr)lo M ) (thjgo Mo ﬂ-od(s? ))

SEMD

. Mo . 1 CO(S)_CT(;dC
(3 (g, 3o o

_ B [eo() ] 7o

 ozsws D (2 )" Ager

D.5. Proof of Proposition 5. For any realization of o, labor demand by firm b at d

can be expressed as:

la(b,o) = (1 — ) ca(b,0)ya(b, o)

1
wq (0)
Substituting the above expression in the labor market clearing for location d, we

obtain:

La= Y la(b,0)

beMy
-y %@(1 — aa) calb, 0)ya(b, o)
beMy

Wy (0) Ld

- Z Cd(bv O-)yd(bv O) = 1 — g

beMy

Goods market clearing condition for firm s located at o can be simplified as:

Tod (S, 0)Moa(s, b, k, o)
zd:b;dg;c Aod(s,b,k,0)
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Tod (S, 0)Goa(S, 1, k, 0)
+ZZZ god(57i>k70)

d i1€Ly kek
1 1{s=si(,k,0)}
= CO(S,O')yO(S,O'> - Zad Z (_Z — Cd(b, O')yd(b, 0')
T e K malbi ko)
1 1{s=si(i,k,0)}
2N T e ) wi@) + ()
d 1€Ly kek
1 1{s5(b,k,0) € M,}
= Z CO(S,O')yO(S,O') = Zad <_Z - Cd<b, U)yd(b, 0)
sEM, | d beMy K kekC md<b7 k? U)
(1) §gpply (2) Intermedia‘;erlnput Demand
1{si(i,k,0) € M,}
+ (wa() + Ia(0))
g = ( Z ma(i, k, o)

J/

~
(3) Final Consumption Demand

We can simplify term (1) by making use of the labor market clearing condition as:

Supply = Z CO(S, 0>y0(57 U)

SEM,
Wo(0) Ly

1—q,

We can simplify term (2) as follows:

Intermediate Input Demand

DS (— A e ) calb. 7)yalb )

beMy ke
(A)
1 1
ks <—Z {s5(b, kbieM}> (5, )yalb.)
N 4 pemy keK M o)
= d
1
q — > ca(b,0)ya(b, 0)
\]wd beMy |
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x > ca(b,o)ya(b, o)

beMy

~~
:wd(a')Ld

l-—ay

Term (A) can be simplified as follows:

=7 3 (% >R §>MO}> )

beMy kex
—=E (% ) : {8257;;?0/3 5)M0}> ca(*,0)yal:, U)]
kek B
-5 (55 R o
L kek 7 N
L kek » i
1{s3(-,k,0) € M,}
E E [ca(-,)yal-, o)
Z [ mal’ , 0) } o
E{l{sd 2,0 EM}] ol o)l o)
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Term (B) can be simplified as follows:

:—chbaydba

bGMd

t—o0

— Eleal, 0)ya(-, 0)]

Substituting (A) and (B) back in the Intermediate Input Demand,we obtain:

L
Intermediate Input Demand = Z adﬁ%d (e, —,00) wld(_g)add

We can simplify term (3) as follows:
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Final Consumption Demand

=22 (% > Z)E)M”}> (w4(0) + IL4(0))

d €Ly kel
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Also, note that Ty(o)Ly = (Cz“—l - 1) > ben, Calb, 0)ya(b, o) = %% Putting

these together we can further simplify the goods market clearing condition to obtain

the desired result as follows:

l—a, (+14 — Qg ¢(1 - aq)
wq(o)L
— Zﬂ-od(.7 70-0) 1d(_) d
d d
wy(o)L, wq(o)Lq
1 —a, — ;ﬂ-od(.7 70-0) 1 —ay

Since {wqy(o)}, solves the above system of equations for a given realization of oy,
irrespective of the realization of oy, we conclude that wy(o) = wy(0g). That is,
{wg : d € J} solves the following system of equations for given realization of oy, ir-
respective to realization of o;.

WoLo wqLyg
1—a, ;WQd(.’_)l -y
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D.6. Expected Utility & Welfare Changes. Households residing at location d are
heterogeneous in their match-specific taste shocks of using different suppliers’ goods to
fulfill their needs. Welfare at any location is then calculated in expectation. That is,
Vi =E[Vy(+)]. With Cobb-Douglas utilities across needs, indirect utility of household
1 residing at d is given by:

wa (1 +Y/¢01-00))

Hszl pali, k)<

Expected indirect utility of households at location d can then be derived as:

Va(i) =

Va=E[Va()]

wa (1+Yc-a0) [ paC:, k)_l/K]

k=1

=E

K
= 1+1/Cl Qo) HE VK}
k=1

K
= (1 + 1/((1—a0)> r (2 — C_K> wdAé

Welfare changes, i.e., changes in expected indirect utility at location d in response
to shocks can be calculated as:

V= WaAl"

where wy denotes the change in wage and A\d denotes change in market access at d.

D.7. Procedure for Computing Counterfactual Outcomes. Counterfactual anal-
ysis is conducted in three steps. First, I evaluate the expected value of aggregate and
firm-level outcomes in the initial state. Second, I compute changes in aggregate out-
comes that result from the counterfactual shock. Finally, I evaluate the expected value

of aggregate and firm-level outcomes in the counterfactual state

Step 1: Compute expected value of aggregate and firm-level outcomes in initial state.
In the initial state, wL = {wyL, : d € J} is obtained as the solution to the following

system of equations:




where 7%, (o, —) is calculated as in equation (4.10). Using the solution to these equa-

tions, value-added and gross output for each district are respectively calculated as:

. (VA/co),
Vo= vt (e 247)

1
60u= it (a7 =)

where (V4/co), for district d is calculated in equation (C.1). Total value-added across

all districts is chosen as the numeraire, i.e., >,V A; = 1. At the firm-level, input sales,

total sales, intensity of use, and average customer size are respectively calculated as:

input sales,(s) = szd(s, —)(GOy —V Ay),
total sales,(s Zwod s, —)GOy,

intensity of use, Z (s, —) My,

input sales,(s)

average customer size,(s) = - ) :
intensity of use,(s)

where 7%,(s, —) is calculated as in equation (4.9).

Step 2: FEvaluate change in aggregate outcomes from initial to counterfactual state.
For any change in oy, =16, (0,d) € J x j}, one can solve for change in wages
w = {Wy : d € J} with the following tatonnement algorithm for some positive constant
i and tolerance value tol:
(1) Start with a guess for the vector of change in wages, T
(2) For the vector of wage changes, in the ' iteration @Y, compute change in

market access as the solution to the following system of equations:
AW Zmd . —)00d A(t))ig(lfao) <ﬁ(t)>ao

(3) Compute counterfactual sourcing probabilities as:

< (t)(O, —)>/ = Tod(®, —)Sod <@gt)>4(1%) (g‘(’t)>ao

7.‘—od A\Elt)
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(4) Compute excess demand for labor Z <1Au(t)) = {ZO <1Au(t)> 10 € j} as
l—a ! wqlL
~®) _ 0 @O\ A0 Waka
2. (8) - L 5 (e ) 252 -
(5) Update the vector of change in wages as " w4z (@(t)>.

(6) If | — @ > tol, go back to (2), else end.
1
Welfare changes can then be computed as V; = w((fo) <A((1°O)> ‘.
Step 3: Compute expected value of aggregate and firm-level outcomes in counterfactual

state. As in the initial state, here again V' Al, and GO), are computed for each district

using (wL)" instead of wL.

Firm-level outcomes are then calculated by using 7'('(()20)<., —) instead of 7}, (e, —) as

follows:

(input sales,( Z 7rod (s,—) (GO, —V Ay,

(total sales,(s Z?TOd s, —)GOY,

(intensity of use,(s))" = <Z 7 (s, —)Md> :
d

(input sales,(s))’

(average customer size,(s))’ =

(intensity of use,(s))"’

(%0(5)7¢) "Boa(s) ()
S orenty (Co(s) ) Boa(s’) 04
from the change in .

(00

where 7, )(3, -) = (e, —) and god(s) is the firm-level shock

APPENDIX E. QUANTITATIVE APPLICATIONS

This section illustrates how the model can be used to assess the consequences of
micro- and macro- shocks to the spatial economy. First, I discuss how the production
network of firms changes in response to an aggregate shock that uniformly reduces

external trade frictions. Second, I examine the implications of neutralizing firm-level
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distortions when they are either positively or negatively correlated with firm size on

aggregate and firm-level outcomes.

E.1. Market Integration. A large body of recent literature studies barriers that im-
pede trade between regions within a country and the gains that accrue from a reduction
in those barriers (for a review, see Donaldson (2015)). I study the firm-level implica-
tions of a decline in relative costs of trading with firms in other districts. This exper-
iment conceptually captures improvements in transportation infrastructure as well as
any other policy changes that affect trade outside an agent’s own location relative to
within its own location. I consider the counterfactual scenario where external trade
frictions decline by 10%.?* With a decline in external trade costs, a large majority of
firms are subject to opposing forces along the upstream and downstream margins.
Figure E.1 depicts the effect of these margins of firms’ sales to other firms. To
understand this, it is useful to look at firms in four groups: (a) those in the top 5%
in terms of sales; (b) those in the top 10% but not in the top 5%; (c) those in the top
25% but not in the top 10%; and (d) those in the bottom 75%. First, consider firms
in group (a). Starting with the top left panel, these firms gain the most in intensity
of use. At the same time, they are more likely to have had customers who are large,
i.e., in the top 5% and whose sales declined. This implies that the average customer
size of these firms declines as shown in the top right panel. These firms are subject to
opposing forces on the upstream and downstream margins. While they gain in intensity
of use, the lose sufficiently in average customer size that their sales decline. Second,
consider firms in group (b). These firms still gain above 4% in intensity of use but are
also likely to have had customers in the top 5% (whose sales declined). These firms are
also subject to opposing forces on the upstream and downstream margins such that
their sales increase. Third, consider firms in group (c). These firms gain less than 4%
in intensity of use, are less likely to have had customers in the top 5% and so their
average customer size increases. These firms are also subject to reinforcing forces on
the upstream and downstream margins such that their sales increase. Finally, consider
the large majority of firms in group (d). These firms lose in intensity of use, but are also

much less likely to have had customers in the top 5%, so their average customer size

ZCounterfactual outcomes are evaluated using the procedure described in Appendix D.7 with aggre-
gate shocks given by:

gd: 11%( O#d
¢ 1 o=d

There is no heterogeneity in shocks at the firm-level in this counterfactual experiment.
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Change in Intensity of Use in Counterfactual

FI1GURE E.1. Decline in Trade Frictions: Change in Firms’ Sales
and its Margins
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Note. For each year, firms are grouped into 1000 bins according to their sales in
the initial equilibrium. Each bin consists of around 1000 firms. For firms in each
of these bins, the top left panel plots the average percent change in intensity of use
when trade frictions decline, the top right panel does the same for average customer
size, and the bottom panel for sales to other firms.
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increases. These firms are subject to opposing forces on the upstream and downstream
margins. While they lose in intensity of use, the gain sufficiently in average customer
size that their sales increase.

Taking stock, as trade frictions decline, firms with low production costs become
more successful at farther or less remote destinations in getting selected for customers’
tasks. This comes at the expense of firms with higher production costs who are now
less successful in getting selected for tasks both locally and elsewhere. While intensity
of use of firms in the bottom three quartiles decreases by as much as 8%, intensity of
use for firms in the top quartile increases by as much as 4%. At the same time, firms
in the top decile are more likely to have customers in the top 5% those for whom sales
has declined. Those customers produce less and source fewer inputs from firms in the
top decile. Average customer size for firms in the top decile and quantity demanded
from them declines. On the contrary, firms in the bottom nine deciles are less likely
to have customers in the top 5% for whom sales has declined. For these firms, average
customer size has increased. The net outcome of these margins acting on firms at
all quantiles is that large firms’ sales to other firms shrink where as those of a large

majority of firms in the lower quantiles expands.

E.2. Size-Dependent Distortions & Improvements in Allocative Efficiency. A
substantial literature has documented the presence of firm-level distortions in develop-
ing economies (for a review, see Atkin and Khandelwal (2020)). In this counterfactual
experiment, I study the implications of neutralizing positively versus negatively size-
dependent distortions affecting firms’ labor input choice. The notion for such gains is
similar in spirit to that in the closed economy model with labor wedges as in Hsieh
and Klenow (2009), multiplier effects from inter-sectoral linkages as in Jones (2013),
and trade as in Swiecki (2017). Unlike these papers, I consider the effect of removing
firm-level distortions through the lens of a model of trade where production networks
between firms respond endogenously. The experiment I consider homogenizes labor
market distortions. That is, it eliminates dispersion in those firm-specific labor market
“taxes” and hence consists of shocks at the firm level. In conducting this analysis, I
assume that all tax revenue is rebated equally to local households both in the initial
state and the counterfactual state and hence the level of the homogeneous tax rate

in the counterfactual scenario does not affect welfare calculations.** Figure E.2 shows

24Gize-dependent distortions are generated as:

1+t,(s) = (1- q)f% if distortions are positively size-dependent
’ q " if distortions are negatively size-dependent ’

64



FI1GURE E.2. Elimination of Size-Dependent Distortions: Direct
& Indirect Effects

Positively Size-Dependent Distortions Negatively Size-Dependent Distortions
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Note. The left panel plots direct and terms of trade effects when distortions are
positively size-dependent and the right panel when distortions are negatively size-
dependent. Points are shaded by state in both panels, darker shades indicate richer
states. For each district, direct effects are calculated as the increase the total factor
productivity if each district were a closed economy. Terms-of-trade effects are calcu-
lated as the difference between the welfare change from the experiment and the direct
effects.

that terms of trade effects are negative in a large number of districts when removing
negatively size-dependent distortions while they are largely positive when removing
positively size-dependent distortions.

The result of removing distortions at the firm-level is that firms that faced higher
tax rates and were too small, now expand, with labor being reallocated to them as in
models of misallocation such as Restuccia and Rogerson (2008) and Hsieh and Klenow
(2009). While this captures direct effects, the analysis here also takes into account
indirect effects through input-output linkages between firms and the endogenous re-

sponse of the network structure to these shocks. To examine how this experiment

where ¢ denotes the quantile of the firm for sales to other firms and 7 denotes the shape
parameter of Pareto distributed distortions drawn from the following cumulative distribution

function:P (1 +t,(s) <141t) = (1 -1+ t)fn) 1{t > 0}. For generating distortions, 7 was cali-
brated to 5. Counterfactual outcomes are evaluated using the procedure described in Appendix D.7
with firm-level and aggregate shocks respectively given by:

~

5od(3)

50(1 — I/E{to}[(1+to)_<(l_°°)]~

/(144 (s)) =m0,

65



TABLE E.1. Elimination of Size-Dependent Distortions: Mar-
gins of Changes in Firms’ Sales

A% Upstream A% Downstream

Margin Margin
(1) (2)
Positively Size-Dependent:
Distortions:
Maharashtra 73.87% 11.81%
Tamil Nadu 82.02% 8.23%
Gujarat 82.52% 6.75%
West Bengal 80.47% 9.89%
Odisha 74.82% 12.00%
Overall 81.16% 8.34%
Negatively Size-Dependent:
Distortions:
Maharashtra 66.57% 1.34%
Tamil Nadu 73.23% 1.40%
Gujarat 80.73% 1.57%
West Bengal 78.01% 3.11%
Odisha 71.25% 1.11%
Overall 75.08% 1.58%

Note. This table reports the contribution of changes in firm’s margins to the variation
in changes in firms’ sales calculated using a Shapley decomposition when firm-year
observations are split by state.

affects the production network between firms, I consider the decomposition of changes
in firms’ sales to other firms into changes in its intensity of use and changes in its
average customer size. Table E.1 reports the results of a Shapley decomposition of
margins of sales. I find that changes in intensity of use explain majority of variation in
changes in firms’ sales — around 80% with positively size-dependent distortions and
75% with negatively size-dependent distortions. The downstream margin is however
less important in the case of negatively size-dependent distortions than in the case of
positively size-dependent distortions. This is because firms with lower sales and facing
larger distortions are likely to have had higher production costs. Since their customers
sourced inputs from relatively expensive suppliers, they likely had higher production
costs themselves and therefore change relatively less in size when such distortions are

neutralized.
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